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Abstract

Proteins are biological macromolecules responsible for a panoply of critical functions within
the cells of living organisms. Protein comparison via the technique of alignment is an indispens-
able first step in many biological studies. An alignment postulates a one-to-one correspondence
between pairs of amino acids amongst proteins, reflecting how they are evolutionarily related.
This relationship can be inferred with varying degrees of confidence, using information from
either the one-dimensional amino acid sequence or the three-dimensional structure, and some-
times both.

The classical problem of protein sequence alignment has been a well investigated topic for
the last four decades. A general sequence alignment method involves an objective function
to quantify the quality of an alignment relationship (in terms of amino acid substitutions
and gaps) and an optimisation algorithm to search for the best alignment. Despite a lot
of attention, generating sequence alignments in practice relies on ad hoc scoring functions and
user-specified parameter choices, yielding radically different and contradictory alignments under
varying parameter settings. Moreover, there is a disconnect between the mathematical models
that handle amino acid substitutions and those that handle gaps. Furthermore, the trade-off
between the complexity of an alignment and its fidelity to explain the underlying sequence data
has received little attention.

This thesis is an attempt to revisit this classical problem in the hope of addressing the
aforementioned limitations. It approaches the pairwise protein sequence alignment problem
from the standpoint of unsupervised inductive inference using the Bayesian and information-
theoretic criterion of Minimum Message Length (MML). The thesis develops a statistical frame-
work to generate and evaluate alignment relationships over sequence data based on their joint
or marginal probabilities, and does so strictly in terms of Shannon Information, measurable
in bits. The MML objective provides a direct way to handle the trade-off between align-
ment/hypothesis complexity and fit, and to explore competing alignments beyond finding the
best under the objective. The framework further provides the ability to learn statistical models
of alignments in the form of three-state machine models, parameterised on the (evolutionary)
time of divergence, to work in conjunction with a given time-dependent model of amino acid
substitution. This thesis culminates with the inference of a new Markov model of amino acid
substitution (named MMLSUM). A comprehensive study of MMLSUM compared to popularly used
substitution models has been carried out to demonstrate its effectiveness. Finally, the thesis
concludes by proposing a proof-of-concept approach to combine 1D sequence and 3D structure
information under a single unified MML framework, by combining the models for protein se-
quence alignment presented in this thesis with existing (in-house) models for protein structure
alignment.
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Chapter 1

Introduction

“Begin at the beginning”, the King said, very gravely,
“and go on till you come to the end: then stop.”

– Lewis Carroll in Alice in Wonderland

Proteins are biological macromolecules that play crucial roles in the molecular and cellular pro-
cesses of all living organisms. They carry out a myriad of functions within cells, as antibodies,
transporters, enzymes, regulators, and signal transducers, amongst many others (Lesk, 2016).
The chemical signature of a protein is characterised by a linear chain of amino acids (sequence)
that spontaneously folds into an intricate three-dimensional shape (structure), which in turn
determines its function.

Over the past seven decades, technological developments in molecular biology have fuelled
rapidly-growing public databases of protein sequences and their atomic-resolution structures
(e.g. Universal Protein Resource – UniProt (UniProt Consortium and others, 2017) and Protein
Data Bank – PDB (Berman et al., 2003), respectively).

Comparison between extant proteins is an important task in many biological studies. It re-
veals the principles and macromolecular consequences of evolution, whose insights drive progress
in life sciences and medicine (Rosenberg, 2009).

Protein comparison often relies on the computational task of alignment. An alignment is
the assignment of one-to-one correspondences between a subset of their amino acids. Such an
alignment is used to answer at least two fundamental questions: Are the proteins being compared
related? If yes, how precisely are they related, at the level of their amino acid correspondences?
Each correspondence (match) between amino acids is a hypothesis of their divergence from the
same locus within the genome of a nonextant common ancestor (Barton and Sternberg, 1987;
Konagurthu et al., 2006). On the other hand, unmatched amino acids are taken as accumulated
insertions or deletions during the evolution of proteins. Thus, when alignments are computed
reliably, they reveal how proteins diverge, tolerating changes to their sequence, while conserving
core elements of their structure and consequently, their function (Lesk, 2016).

Alignment relationships between proteins are commonly derived using two distinct sources
of information: the one-dimensional (1D) sequence composed of amino acids symbols, or the
three-dimensional (3D) structure composed of protein coordinates. Based on the information
used to generate an alignment, the outcome is designated as either a sequence alignment or
a structure alignment. When both sources of information are combined, it is designated as a
sequence-structure alignment (Levitt and Gerstein, 1998).

In general, the protein alignment problem is posed as an optimisation problem of finding
the best alignment under some objective function. This objective function is used to quantify
the quality of any alignment. Almost ubiquitously, two key (opposing) criteria are involved
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here: (1) a criterion that accounts for matched regions, and (2) a criterion to account for
the unmatched regions. An objective function is constructed to balance them. Depending
on the type of alignment (i.e. sequence, structure or sequence-structure alignment) being
computed, these criteria are formulated in different ways. Based on these applied criteria and
the parameter choices being made, it remains that, finding biologically-meaningful relationships
between proteins is a challenging computational problem (Sali and Blundell, 1990; Jones et al.,
1992b; Bryant and Altschul, 1995; Smith et al., 1997; Levitt and Gerstein, 1998; Rost, 1999;
Buchan and Jones, 2017).

From the point of statistical learning, the varied dispensations of these criteria (across
different alignment types) in the literature provide handy yet approximate ways to address
the trade-off between descriptive complexity (of an alignment relationship) and fit (fidelity of
that relationship). Specifically, in traditional methods for sequence alignment, this trade-off is
commonly handled using substitution scores and gap penalties. For structure alignment, this is
commonly handled using the alignment coverage (proportion of matches) and the root-mean-
square deviation after their rigid-body superposition of protein coordinates.

Comprehensive reviews have shown that, different formulations of the alignment objective
function and parameters controlling them have led to a lack of consensus amongst the resultant
protein alignments in the existing state of the art. Tuning and searching for parameters that
are best for each alignment run is a challenging problem and remains a major source of incon-
sistencies between alignments generated by varying methods (Fitch and Smith, 1983; Barton
and Sternberg, 1987; Vingron and Waterman, 1994; Blake and Cohen, 2001; Do et al., 2005,
2006; Hasegawa and Holm, 2009; Slater et al., 2012). Biological studies that rely on inaccurate
alignment results lead to erroneous conclusions and interpretations (Löytynoja and Goldman,
2008).

1.1 Motivation and Overarching Methodology

This thesis revisits the classical problem of protein sequence alignment, in an attempt to improve
its statistical foundations and overcome key limitations observed in commonly-used alignment
methods (see §2.4).

Broadly, it approaches the problem of protein sequence alignment from the standpoint of
unsupervised inductive inference, where each hypothesis is evaluated based on its ability to
explain itself as well as the observed data, supported by probabilistic models whose parameters
are automatically estimated/inferred (rather than tuned by users).

Specifically, this thesis approaches the inference of sequence alignments using the general
Bayesian and information-theoretic technique of Minimum Message Length (MML) (Wallace
and Boulton, 1968; Wallace, 2005). Here, the quality of any alignment relationship between
amino acid sequences is quantified in terms of its information-theoretic complexity and its fidelity
to succinctly explain the observed amino acid sequence data. Using MML, this can be formalised
as the length of the lossless encoding of any proposed alignment relationship/hypothesis and
the amino acid sequence data it explains – i.e. the Shannon information content – measurable
in bits. Such an information-theoretic dispensation of this problem yields a powerful framework
with important properties (see §4.1) and provides a formal way to address the trade-off between
alignment complexity and its ability to explain the sequence data.

Below, the specific objectives of this thesis are made concrete, followed by key contributions
and a chapter-wise outline.
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1.2 Objectives of this Thesis

This thesis has the following key objectives:

• Develop a new unsupervised statistical framework for the protein sequence alignment
problem by modelling it using the Bayesian and information-theoretic criterion of Mini-
mum Message Length (MML) inference (see §4.1 – §4.2).

• Extend this framework to allow exploration of competing alignments under the criteria of
joint and marginal (i.e. total) probabilities of alignments over protein sequences, leading
to useful visualisation of the entire alignment landscape (see §4.3).

• Learn time-dependent alignment three-state machine models to work in concert with
any specified Markov model of amino acid substitutions, thus statistically unifying the
treatment of all amino acid substitutions, insertions and deletions (see Chapter 5).

• Infer new Markov models of amino acid substitution that are versatile across the range
of amino acid relationships (see Chapter 6)

• Combine the outcomes from this thesis with existing MML models for protein structure
alignment, thereby providing a new proof-of-concept information framework to generate
protein sequence-structure alignment (see Chapter 7).

1.3 Contributions

This thesis contributes to the theory and practice of protein sequence alignment, by reformulat-
ing the classical problem using formal methods of Minimum Message Length (MML) inference.
The developed framework (see Chapter 4) not only provides the ability to search for a single
best alignment, but also supports the exploration of competing alignments and visualisation of
the entire landscape of all possible alignment relationships.

Furthermore, this thesis presents an inference of a complete set of statistical models quan-
tifying the evolution of protein sequences (see Chapter 5-6). Specifically, the framework infers
new (“time”-dependent) stochastic Markov models of amino acid substitution that outperform
widely used substitution matrices and their companion (time-dependent) alignment three-state
machine models, overcoming a key shortcoming in the field: that of mathematically unifying
amino acid substitutions with amino acid insertions and deletions under the same framework.

Finally, beyond developing the MML framework and deriving statistical models for explain-
ing amino acid evolution, this thesis culminates with a proof-of-principle approach to combine
sequence and structure information in a unified framework (see Chapter 7). Specifically, the
sequence models developed within this thesis is combined with the (in-house) MML-based struc-
ture models and alignment framework developed recently by the PhD thesis of Collier (2016),
in order to address the sequence-structure alignment problem.

1.4 Thesis Outline

The rest of the thesis is structured as follows.
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Chapter 2 gives the background required to lay out the specifics of the protein sequence
alignment problem. It provides a broad overview of proteins, and introduces the common data
sources and collections to prompt the material used in benchmarking the improvements pre-
sented in this thesis. The chapter also introduces the common methodologies used to construct
protein sequence alignments, along with some of their deficiencies that motivate the research
in this thesis.

Chapter 3 introduces the methodological background central to the techniques employed in
this thesis, covering basics of information theory and statistical inductive inference. Specifi-
cally, this chapter discusses the general method of Minimum Message Length (MML) inference,
and how it can be used to carry out unsupervised estimation of statistical model parame-
ters. It presents technical details of the methodological building blocks that underpin the key
contributions of the ensuing chapters.

Chapter 4 develops the MML framework for protein alignment and explores its statistical
properties. It explains the essential statistical models that support this framework for deducing
alignment relationships between sequences. Amongst other things, this chapter explores the
construction of a null model of amino acids, inferred using MML estimation techniques over a
set of proteomes across various species. The chapter introduces a model of protein alignment in
information-theoretic terms by explaining the formulation and estimation of the joint probability
between an alignment and the sequences whose relationship it describes. Further, it goes
into detailing the estimation of marginal (total) probability over all possible alignments, to
explore relationships between sequences in unspecified ways. These models follow a test of
alignment significance that can be posed naturally in MML formulations, using the notion of
lossless compression measured against the length of encoding protein sequences under a null
model. Finally, the concept of an alignment landscape is explored for visualising competing
alignments under the above models of relationships between sequences. This chapter covers
all material originally described and published in (Sumanaweera et al., 2018) along with some
parts published in (Sumanaweera et al., 2019).

Chapter 5 describes an unsupervised inference of the statistical models of amino acid evo-
lution as a function of estimated divergence between two proteins, extending the initial MML
framework developed in Chapter 4. Specifically, this chapter focuses on the inference of align-
ment three-state machines as a function of sequence divergence (evolutionary time) for any
stated Markov model of amino acid substitution. It begins by introducing Dirichlet probability
distributions to model the free parameters of an alignment three-state machine, and shows the
MML method of inferring them. Next, it elaborates on the estimation of time-dependent Dirich-
let models. This chapter contains material originally described and published in (Sumanaweera
et al., 2019), with results of comparing the MML alignment framework with a set of existing
global alignment programs.

Chapter 6 completes the full set of statistical models necessary for addressing the protein
sequence alignment problem, building on the previous research chapters 4 and 5. Specifically,
it explains the joint unsupervised inference of a Markov model of amino acid substitution
together with the corresponding inference of Dirichlet models (and thereby the three-state
machine parameters – explored in the previous chapter), over any given benchmark containing
protein alignments. The chapter carries out a systematic comparison of existing amino acid
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substitution models, in terms of the Shannon information content required to describe a wide-
variety of alignment benchmarks using those models. It also explores qualitative aspects of
various substitution matrices. This chapter contains material presented in (Sumanaweera et al.,
2020) (manuscript under review at the time of writing this thesis).

Chapter 7 is the last of the main research chapters which presents a proof-of-principle that
permits the unification of 1D protein sequence information and 3D structure information under
the MML information-theoretic framework, to generate sequence-structure alignments of pro-
teins. Specifically, this chapter explores a Näıve Bayes method for integrating the MML-based
sequence alignment models presented in this thesis with the previously established, MML-based
structure alignment models introduced by the thesis of Collier (2016). Preliminary results are
presented, showing a quantitative comparison of similarities and differences between structure(-
only) alignments with those that combine sequence and structure. A discussion using a case
study is explored to understand the qualitative differences between these two alignment types.

Chapter 8 concludes the thesis by reflecting on the key outcomes of this research endeavour,
and future directions that can build on this work.

BC



6 CHAPTER 1. INTRODUCTION



Chapter 2

Proteins and their Alignment

“In the drama of life on a molecular scale, proteins are where the action is”

– Arthur M. Lesk

This chapter gives a broad overview of proteins. It covers how proteins are translated within
cells, the properties of their constituent amino acids, relevant aspects of how proteins evolve,
and the data streams/sources and classification schemes useful for this thesis. It also covers the
technical details on the problem of protein sequence alignment with a discussion on the current
lacunae in its state of the art. Mainly, all the sections presented here establish the motivation
behind the research of this thesis.

2.1 Introduction to Proteins

Deoxyribonucleic acid (DNA) is the genetic blueprint that encodes all life on Earth. Cellu-
lar machinery is able to decode this genetic information through a series of transformations
resulting in proteins (see Figure 2.1).

The expressed proteins in living organisms control nearly all biological processes from its
origin to its development and maintenance (Lesk, 2016). For example, haemoglobin is a protein
which is responsible for transporting oxygen; insulin regulates the glucose level in blood; and
fibrin facilitates blood clotting. An abnormality or disruption with regards to a protein and
its function could impede regular cellular activities and essential biological pathways, causing
adverse phenotypes, diseases and even death. Hence, studying and understanding them is of
paramount importance, especially for developing therapeutic drugs.

A protein is composed of linear chain(s) of amino acids, where typically, each amino acid
comes from a canonical set of twenty naturally-occurring amino acids (See Table 2.1). Chem-
ically, all amino acids are composed of an amine group and a carboxylic acid group, linked
via a central (α) carbon atom. However, the amino acids distinguish from each other based
on the chemical signature of atoms that are bound to the central carbon, giving the amino
acids varying physicochemical characteristics (See Figure 2.2). Successive amino acids along
the protein chain are linked via peptide bonds that are formed between the carboxylic carbon
and the amino nitrogen atoms. Thus, any protein chain can be represented as a sequence of
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Figure 2.1: The central dogma of molecular biology: Genome composed of DNA (described over
the {A,T,G,C} alphabet) encodes all instructions required for constructing proteins through
genes. Genes are the specific information units within the genome that code for proteins. A gene
is transcribed into mRNA (described over the {A,U,G,C} alphabet) through an intermediate
Pre-messenger RNA (Pre-mRNA) molecule. Molecular machinery within cells converts each
successive group of three bases (codon) in the RNA molecule into an amino acid. The mapping
of 64 possible codons to their corresponding 20 possible amino acids defines the universal genetic
code.

Figure 2.2: Chemical structure of a general amino acid. It has an amine group (NH2), a
carboxylic group (COOH), and a central carbon atom with a side chain (R) attached to it. R
determines the type of the amino acid.)

amino acids along its chain. Proteins spontaneously folds into intricate three-dimensional (3D)
shapes (structure), upon translation from mRNA (see Figure 2.1).1

Amino acid properties such as hydrophobicity, polarity, and charge of an amino acid residue
determine the types of bonds they form and their interactions with their surroundings. For
instance, hydrophobic amino acid are usually buried within the interior of the protein structure
(Lesk, 2010).

1Levinthal (1969) reasoned that the minimum free energy state cannot feasibly be a result of an exhaustive
search of the astronomically-large space of potential protein shapes, thereby hinting that the optimised shape
of the protein is kinetically-driven.
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Table 2.1: This is the list of 20 naturally occurring amino acid residues. Each residue is
identified by a unique name, with a three-letter abbreviation and a corresponding single-letter
code (IUPAC-IUB Committee on Biochemistry Nomenclature, 1968).

Amino acid Three-letter code Single-letter code Formula Chemical class∗

Alanine Ala A C3H7NO2 aliphatic
Arginine Arg R C6H14N4O2 basic
Asparagine Asn N C4H8N2O3 amide
Aspartic acid Asp D C4H7NO4 acidic
Cysteine Cys C C3H7NO2S sulfur
Glutamine Gln Q C5H10N2O3 amide
Glutamic acid Glu E C5H9NO4 acidic
Glycine Gly G C2H5NO2 aliphatic
Histidine His H C6H9N3O2 basic
Isoleucine Ile I C6H13NO2 aliphatic
Leucine Leu L C6H13NO2 aliphatic
Lysine Lys K C6H14N2O2 basic
Methionine Met M C5H11NO2S sulfur
Phenylalanine Phe F C9H11NO2 aromatic
Proline Pro P C5H9NO2 aliphatic
Serine Ser S C3H7NO3 hydroxyl
Threonine Thr T C4H9NO3 hydroxyl
Tryptophan Trp W C11H12N2O2 aromatic
Tyrosine Tyr Y C9H11NO3 aromatic
Valine Val V C5H11NO2 aliphatic

∗Chemical class of each amino acid is given by the IMGT classification (Lefranc et al., 2015).

2.2 Organisation of Proteins

Proteins are commonly rationalised using the following levels of description (Linderstrøm-Lang,
1952) (see Figure 2.3).

Primary structure denotes the linear chain of amino acids in a protein, represented as a one-
dimensional string of characters, often from the canonical 20-letter amino acid alphabet.

Secondary structure describes the local periodic substructural patterns, helices and strands-
of-sheets (Pauling et al., 1951; Pauling and Corey, 1951)

Tertiary structure refers to the overall three dimensional conformation a protein chain at-
tains by folding into a stable 3D shape. The position of each atom in 3D space is denoted
by its (x, y, z) coordinates.

Quaternary structure defines an ensemble of tertiary structures forming a larger complex.
This level of description potentially integrates multiple protein chains which interact
cohesively as subunits

In addition to the aforementioned broad descriptions of the protein structure, proteins are
also commonly described using their domains. A domain is a compact, independently evolving
structural unit (Richardson, 1981; Murzin et al., 1995)
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Figure 2.3: Protein structural hierarchy of four levels, for an example protein chain apo dogfish
m4 lactate dehydrogenase with SCOP ID: d3ldha (coming under PDB ID: 3ldh) (a) Primary
structure: the amino acid sequence, (b) Secondary structure: helices (in blue) and strands of
sheet (in red), (c) Tertiary structure: 3D atomic structure, and (d) Quaternary structure: an
ensemble of multiple chains to form a functional unit. (Note: molecular visualisations were
produced using PyMOL (Schrödinger Inc., 2015))

2.2.1 Evolution of Proteins

The studies of the observed repertoire of proteins across the three domains of life (i.e. Eukarya,
Bacteria and Archaea) provide many insights into the mechanisms of macromolecular evolu-
tion (Dayhoff, 1978). These proteins have evolved under a complex evolutionary process over
billions of years. Research has identified major types of evolution, including divergent evolution
and convergent evolution.

Divergent evolution illustrates an event of extant proteins diverging from a common an-
cestral protein. This results in a homology relationship, forming two different lineages. The
pair can represent the same species or two different species if diverged far beyond a speciation
event. (In such case they are called orthologs). During this process of evolution, even though
the sequences of related proteins undergo drastic change, the core structure tends to be largely
conserved while the peripheral regions in their structures refold (Chothia and Lesk, 1986; Lesk,
2010).

Convergent evolution refers to proteins across different lineages, independently evolving to
similar end-points, gaining structures that attain similar functions (Pollock et al., 2017).
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The focus of this thesis is to study relationships between proteins that have diverged from a
common ancestor, thus some general principles that drive divergent evolution of proteins, and
their impact on sequence, structure and function are briefly explored below.

Proteins diverge in their sequences due to mutation events on the underlying genetic blueprint,
mainly observed as substitutions, insertions and deletions of amino acids. Although structures
are more conserved in evolution than sequence, these sequence mutations can also alter the
structure and hence affect protein function (Soskine and Tawfik, 2010). Chothia and Lesk
(1986) characterise the sequence-structure divergence between related proteins as a function of
the fractional sequence identity between their core structures (i.e. ∆ = 0.4e1.87F where F is
the fraction of mutated amino acids within the core regions of protein structures). Although
this broadly links the divergence of sequence with divergence of structure, it is understood
that different loci within proteins can nevertheless have varying rates of change due to varying
degrees of structural and functional constraints on them (Lesk, 2001).

As protein sequences diverge, even though there is a pressure to preserve core structure,
and consequently function, the changes can also facilitate proteins acquiring new functions, and
provide more fitness to adapt to the conditions in which the host organism is evolving. Some
examples can be found in the studies of Zahn (2014) and Cheatle Jarvela et al. (2014).

Thus, in protein evolution, the sequence gradually accumulates amino acid substitutions,
insertions and deletions. A substitution results in an amino acid being replaced by another
amino acid at the same locus. In the seminal work of Dayhoff (1978), this is defined as a
point accepted mutation. Further, insertions or deletions of amino acids commonly arise due to
errors made by molecular machinery during DNA replication or alternative splicing (Miko and
LeJeune, 2009; Rosenberg, 2009).

As per the Darwinian survival of the fittest (Darwin, 1859), natural selection results from
beneficial changes to survive, whereas deleterious changes can cause the organism to be culled
from the population. Thus, the basis of divergent evolution is driven by conserving or modifying
function (Lesk, 2001).

Commonly, domains are considered as independently-evolving structural units of proteins
that are conserved in evolution (Marsh and Teichmann, 2010). Proteins acquire new functions
via different mechanisms to gain new domains or lose existing domains during evolution. Pro-
teins that share same combinations of domains provide a strong evidence for their divergent
evolution (Vogel et al., 2004).

Divergent evolution of a set of protein sequences is often visualised in the form of a rooted
phylogenetic tree. Often in such trees, branch lengths at each internal nodes are proportional
to the evolutionary time elapsed as sequences diverge from their common ancestors. This time
is commonly represented as a function of the observed divergence at the sequence (amino acid)
level. To address the subtleties of modelling sequence divergence, several measures have been
proposed (Dayhoff et al., 1978; Nei and Kumar, 2000; Kimura, 1983; Ota and Nei, 1994). Pre-
vious studies have pointed to an approximately constant rate of amino acid change over any
lineage in the phylogenetic tree, as hypothesised in the notion of a molecular clock by Zuck-
erkandl and Pauling (1965). This concept of a molecular clock is based on the idea that the
sequences of individual protein families undergo amino acid changes (mainly substitutions) at
a constant rate, and different protein families have different such rates (Lesk, 2001). Under
this hypothesis, a divergence can be measured in terms of actual time elapsed from their lowest
common ancestor (Sarich and Wilson, 1967).

In the inference of phylogenetic trees, extant proteins appear as leaf nodes, whereas internal
nodes are hypothesised common ancestors. Accurately inferring such a tree is an extremely chal-
lenging computational task (Allison and Wallace, 1994). Several practical methods have been
developed to construct phylogenetic trees since early 70s (Fitch, 1971; Felsenstein, 1973; Feng
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and Doolittle, 1990; Kishino et al., 1990; Redelings and Suchard, 2005; Brown and Truszkowski,
2012).

2.2.2 Protein Experimental Data Streams and Databases

With major developments in the field of Molecular Biology, the last seven decades have wit-
nessed the development of many Nobel-prize winning technologies to characterise protein se-
quences, as well as technologies to resolve their 3D structure

Fred Sanger (in 1951) experimentally characterised the chemical signature of Insulin, the
first protein to be sequenced, winning him his first of the two Nobel prizes in 1958 (Sanger and
Tuppy, 1951). Since then, direct experimental methods such as Edman degradation (Edman
et al., 1950) and high-throughput mass spectrometry are major contributors to modern protein
sequencing efforts (Saraswathy and Ramalingam, 2011). Further, with the advent of high-
throughput genome (DNA) sequencing technologies, first developed in 1970s, it has become
feasible to characterise protein sequences by translating open-reading-frames within sequenced
genomes and then translating the triplets into expected amino acids.

Separately, experimental determination of protein 3D structure started with the develop-
ment of X-ray crystallographic techniques that led to the resolution of Sperm whale myoglobin
and later Human haemoglobin structure. Existing methods to resolve protein 3D structure
include X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy to the
recently introduced Cryo-Electron Microscopy (Cryo-EM). However, these methods require a
significantly greater amount of experimental effort compared to protein sequencing methods.

Atlas of Protein Sequence and Structure (Dayhoff et al., 1965) was amongst the first efforts
to curate protein sequences into databases, with Margaret Dayhoff as the editor. Presently,
UniProt database (UniProt Consortium and others, 2017) (https://www.uniprot.org) is a
publicly available database of protein sequences. At the time of writing this thesis, UniProt con-
tains 195, 667, 571 amino-acid sequence entries. Currently, UniProt2 comes under the Protein
Information Resource (PIR) (Barker et al., 2000) (https://proteininformationresource.
org) which is an integrated, public data resource founded in 1984. Protein sequences are ex-
changed in multiple formats of which, Fast Alignment (FASTA) format introduced by Lipman
and Pearson (1985), Protein Information Resource (PIR) format and GenBank format are the
most commonly used.

On the other hand, Protein Data Bank (PDB) (Berman et al., 2003) (http://www.wwpdb.
org) is the primary data source for experimental 3D structures of proteins. At the time of writ-
ing, PDB contains structural coordinates of 180, 038 proteins and protein-complexes. wwPDB
is an umbrella organisation that combines the efforts of the Research Collaboratory for Struc-
tural Bioinformatics (RCSB) in USA, PDBe in Europe and PDBj in Japan. Together, they
maintain consistency in protein data entries throughout. Atomic coordinate data of proteins
are exchanged using either the restrictive Brookhaven Protein Data Bank (PDB) format, or
increasingly using more scalable and flexible formats such as the Protein Data Bank Markup
Language (PDBML/XML) format, or PDBx/mmCIF (Berman et al., 2003)

2.2.3 Classification of Proteins

Protein classification is a way to organise and catalogue the growing information of proteins
(covering sequence, structure and function) to facilitate protein studies and experiments (Koehl,

2UniProt database has two sub-repositories: (1) Swiss-Prot for manually-annotated and reviewed protein
sequences, and (2) TrEMBL for automatically annotated and unreviewed protein sequences. Currently, there
are 563, 552 and 195, 104, 019 entries in them, respectively.

https://www.uniprot.org
https://proteininformationresource.org
https://proteininformationresource.org
http://www.wwpdb.org
http://www.wwpdb.org
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2006; Hadley and Jones, 1999). This classification remains essential to provide reliable bench-
marks for validating computational methods to compare proteins.

Proteins are often classified at the level of their domains. Richardson (1981) highlighted
that, as an independently evolving protein (sub)unit, classifying proteins hierarchically based
on their domain(s) remained useful, as many multi-domain proteins are composed of assemblies
of domains that resemble domains in other proteins.

Classification of proteins based on the information of their 3D structure and architecture are
widely used. Amongst the main domain-level databases in this category are SCOP (Structural
classification of proteins (Murzin et al., 1995)) and CATH (Class, Architecture, Topology, Ho-
mologous superfamily (Orengo et al., 1997)). Both describe a hierarchical relationship between
protein domains. Hadley and Jones (1999) note that they largely provide consistent classifi-
cation, with SCOP being a good resource for evolutionary information, while CATH provides
more on geometric and architectural patterns of folds. This thesis uses SCOP to generate
benchmarks for protein comparisons, as discussed in Chapter 5 and 6.

There are four main levels in the SCOP hierarchy: (1) class, (2) fold, (3) superfamily and (4)
family. Generally, proteins with structural evidence that reflect shared ancestry fall under the
same family or superfamily. Proteins that belong to the same family also carry a strong sequence
similarity signal as they are closely related. They can be homologs across different species (i.e.
orthologs). Stepping up to the next level in the hierarchy, proteins under the same superfamily
are distantly related with weak sequence similarity signal, but strong structural and functional
conservation. Fold level refers to similar topology observed in the protein domain structures,
mainly encompassing the recurrent secondary structural features and their architecture.

A set of proteins that are closely-related are organised into the same family. Pfam (Bateman
et al., 2000; El-Gebali et al., 2019) is a resource which groups and catalogues by families.
Other databases (e.g. InterPro (Apweiler et al., 2001), PANTHER (Mi et al., 2005), PROSITE
(Bairoch and Bucher, 1994) ) integrate not only the basic sequence data, but also comprehensive
function-level details. These databases also inform the functional classification of protein in
sync with standard biological schemes such as Gene Ontology (GO)(Ashburner et al., 2000).
GO provides functional annotations for proteins in terms of its three hierarchical ontologies:
Biological Process, Molecular Function and Cellular Component.

2.3 Protein Comparison via Alignment

Chapter 1 introduced the motivation of protein comparison via alignment, various types of
alignments, and the general criteria used to find alignments between proteins. This section
elaborates further on the specific technical details of widely-used methods to compute protein
sequence alignment.

An alignment provides a hypothesis of a potential relationship between proteins by assigning
one-to-one correspondences between a subset of their amino acids. In a pairwise alignment,
involving two proteins, any alignment relationship A can be defined as a string over three
alignment-states: match (m), insert (i), and delete (d).

A match state asserts a relationship between a pair of amino acids. An insert state asserts
an insertion of an amino acid in (notionally) the second sequence with respect to the first. A
delete state, often treated symmetrically with insert state, asserts a deletion of an amino
acid in the first sequence with respect to the second. An illustrative example of an alignment
between a pair of amino acid sequences is shown in Figure 2.4a, along with the corresponding
alignment states below each alignment column.
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(a) (b)

Figure 2.4: (a) Example sequence alignment and corresponding alignment states. (b) Proba-
bilistic finite state machine capable of generating alignment three-state strings.

Consequently, pairwise alignment relationships can be modelled as a string generated from a
probabilistic three-state machine illustrated in Figure 2.4b. Such a state machine can generate
any three-state string guided by its state-transition probabilities.

The alignment space of a pair of proteins is the set of all possible alignments between them.
The size of this space grows factorially as a function of sequence lengths. Given two proteins, S
and T, the minimum possible alignment length is the length of the longest of the two sequences
(i.e. max(|S|,|T|)). On the other hand, the maximum alignment length is the sum of the two
sequence lengths (i.e. |S|+|T|). Thus, the length |A| of any possible alignmentA is in the range
[max(|S|,|T|),|S|+|T|]. The total number of possible alignments (i.e. the size of the alignment
space) is given by (based on multi-set permutations involving three possible alignment states):

|S|+|T|∑
|A|=max(|S|,|T|)

|A|!
(|S|+ |T| − |A|)!(|A| − |S|)!(|A| − |T|)!

Any alignment can be visualised as a source-to-sink path in a matrix of order (|S|+1)×(T+1),
where the source denotes the cell (0, 0) and sink (S,T).

In general, the search for meaningful alignment relationships between proteins in this large
space of alignments is posed as an optimisation problem. Sequence alignment methods generate
an alignment solely based on amino acid sequence information. Common criteria used to
quantify a sequence alignment involve a substitution scoring matrix and gap penalty function.
Many substitution matrices and gap penalty functions have been developed. As the main focus
of this thesis, the commonly-employed methodological aspects of computing protein sequence
alignment are discussed in full detail in §2.4.

It is well studied that amino acid sequences diverge more drastically in evolution compared
to their 3D structures (Chothia et al., 2003). However, in the absence of known structure, which
remains time-consuming and hard to resolve experimentally, sequence provides the only avail-
able recourse to comparing proteins and glean their relationships. However, studies have shown
that the detection of these relationships becomes increasingly difficult as proteins diverge (Vogt
et al., 1995; Rost, 1999; Do et al., 2005; Habermann, 2016). Detecting reliable relationships
between twilight zone sequences – these are said to be sequences whose percentage identity of
amino acids is below 35% – remains a challenging problem (Doolittle, 1986; Habermann, 2016).



2.4. PROTEIN SEQUENCE ALIGNMENT 15

The extreme limits to a viable inference of an alignment relationship using sequence informa-
tion alone has been hypothesised to ∼ 10% amino acid sequence identity, which is almost a
value expected for two randomly generated protein sequences (Rost, 1999, 1997).

Thus, detection of relationship between highly-diverged sequences, termed remote orthology
detection, is an important and challenging task. For example, human orthologs of Saccha-
romyces cerevisiae are examined to understand many mitochondrial diseases (Barrientos, 2003;
Szklarczyk et al., 2012). Note that Homo sapiens and Saccharomyces cerevisiae diverged ap-
proximately one billion years ago and yet, they carry a considerable number of functionally
similar proteins (Douzery et al., 2004; Kachroo et al., 2015). Thus, capturing such remote
relationships is salient.

With the above motivation, this thesis will explore the widely used methods and criteria to
address the protein sequence alignment problem.

2.4 Protein Sequence Alignment

Protein sequence alignment is a classical computational problem, with a large corpus of methods
and programs available to address it. The widely-used criteria and methods used to compute
sequence alignments are discussed below.

2.4.1 General Sequence Alignment Scoring Criteria

Commonly, the similarity of matched pairs of amino acids in sequence alignments is quantified
using scores derived from a (user-specified) substitution scoring matrix. Separately, the un-
matched regions of the alignment appearing as inserted runs of amino acids in one sequence or
deleted runs of amino acids in the other, termed as gaps, are penalised using a run-length depen-
dent gap-penalty function, whose parameters (typically, gap-open and gap-extension penalties)
are also user-specified, if not the default values that come specified for any chosen substitution
scoring matrix. These two aspects of quantifying an alignment are elaborated below.

Scoring matches using log-odds scores from a substitution scoring matrix

Each match in an alignment three-state string is describing corresponds to one of the 20×20 =
400 possible ways two amino acids can be matched. A typical substitution matrix L is therefore
a 20×20 matrix with each cell (i, j) storing the score of matching a pair of amino acids indexed
by i (aai) and j (aaj). Conventionally, a substitution between any pair of amino acids is treated
to be directionless (i.e. Lij = L(aai, aaj) ≡ L(aaj, aai) = Lji) (George et al., 1990).

Specifically, each score between any pair of amino acids in the traditional substitution
matrices is defined as a log-odds ratio. It is the logarithm of the ratio between the probability
of the pair being related and the probability that they are unrelated, under some probabilistic
model. The odds ratio gives the ratio of their joint occurrence probability, Pr(aai,aaj), to their
independent occurrence probability, Pr(aai)·Pr(aaj). Therefore, the log-odds ratio is of the
form:

L(aai, aaj) = log

(
Pr(〈aai, aaj〉)

Pr(aai)·Pr(aaj)

)
Interestingly, the log-odds scores can be rationalised in information-theoretic terms. In

general, using the mathematical theory of communication of Shannon (1948), the information
content of an event E with probability Pr(E) (under some probabilistic model) is given by
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I(E) = − log2 (Pr(E)) bits. This value denotes the shortest length of a decodable codeword to
encode (i.e., explain) the event E under that model. Applying this insight, the log-odds score
can be expanded as:

L(aai, aaj) = log

(
Pr(〈aai, aaj〉)

Pr(aai)·Pr(aaj)

)
= I(aai) + I(aaj)︸ ︷︷ ︸

independent explanation

− I(〈aai, aaj〉)︸ ︷︷ ︸
joint explanation

The sum of first two terms on the right hand side, I(aai) + I(aaj), represents the length of
encoding each amino acid independently. The last term I(〈aai, aaj〉) represents the length of
encoding the information of the amino acids jointly. The difference denotes the compression
gained/lost due to their joint explanation compared to an independent explanation.

Thus, the positive scores in any log-odds matrix reflect favourable substitutions, whereas
negative scores indicate unfavourable substitutions (Altschul et al., 1990). Many substitution
scores are often linearly scaled prior to their use, mainly to represent the (scaled) log-odds
scores as integers within a range. A positive multiplicative factor c used to scale the log-odds
scores, translates to the measurement of compression in 1/c bit units. For instance, +12 score
for a pair in a substitution scoring matrix with scores scaled to one-fourth-bit units conveys
that the related model for the corresponding amino acid pair makes the data 23 times more
likely than the unrelated model. Note, scaling of log-odds score does not affect the optimisation
of the alignment score. Applying a positive multiplier or adding a constant per character to
an alignment score/cost value does not change the rank-order of a possible alignment(Allison,
1993).

Note: Summaries of nine widely-used substitution scoring matrices are provided in Chapter
6.

Penalising Insertions and Deletions using Gap Penalty Functions

Insertions and deletions (gaps) are handled using a length-dependent penalty function (denoted
by Γ(l)). Widely reported gap penalty functions are linear, piecewise-linear (or affine), and
concave gap functions.

Using a linear gap function, each insertion and deletion is penalised by a constant amount
g. Affine gap function penalises a gap over two parts: a (stringent) penalty for opening a
gap, controlled by the parameter gopen, and a (less stringent) penalty for extending an existing
gap, controlled by the parameter gextend, which grows linearly with the length of the extension.
concave gap penalty function has the same consideration for opening a gap, but the penalty
for the entire gap grows logarithmically with the gap length. Table 2.2 characterises all these
three gap functions.

Both affine and concave gap functions are considered more biologically meaningful, as they
attempt to capture the insight that insertions and deletions are more likely to appear en
bloc in protein sequences, given that nucleotide-level insertions and deletions also appear in
blocks (Cartwright, 2006). Thus, these two gap penalty functions ensure that the observed

Table 2.2: Commonly-used gap penalty functions

Type Gap penalty function

Linear Γ(l) = g × l
Affine Γ(l) = gopen + gextend×(l−1)
concave Γ(l) = gopen + gextend× log (l)
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gaps in any alignment are realistic and avoid favouring short stretches of gaps, interspersed
between the matches in any alignment.

From a point of view of alignment three-state machines, the penalty for any gap of length
l under the affine gap function can be rationalised in terms of the logarithm of the probability
of a random variable over a geometric distribution. Given a probability of opening a gap as
Pr(gap-open) and the probability of extending a gap as Pr(gap-extension), the length of the
gap can be modeled as a random variable over a geometric distribution with the parameter
Pr(gap-extension). In general, the geometric distribution models the number of Bernoulli trials
needed to observe a certain outcome. Here the outcome is, ending the current gap. Therefore,
under this model, the likelihood of any gap with length l is given by:

Pr(gap-open)× (Pr(gap-extension))l−l.

The logarithm of this likelihood yields a form similar to the affine gap penalty function:

log(Pr(gap-open)) + (l − 1)× log(Pr(gap-extension))

Note, that the expected length of any geometrically distributed gap length (random variable)
is given by:

1

[1− Pr(gap-extension)]

The affine gap model is more widely used than the concave scheme. This is because, the
alignments can be computed more efficiently (i.e. computational complexity wise) under the
affine gap model compared to the latter (Gotoh, 1982; Rivas and Eddy, 2015).

Finally, it is common practice for users to choose a substitution scoring matrix and accom-
panying gap parameters when aligning protein sequences.

2.4.2 Searching for the Best Alignment

Dynamic programming (DP) (Bellman et al., 1954) is commonly used to address the problem
of sequence alignment. DP is applicable when an optimisation problem exhibits two key char-
acteristics: (1) an optimal substructure and (2) overlapping set of subproblems. An optimal
substructure gives the ability to partition a larger problem into smaller subproblems such that
the optimal solution of the larger problem can be constructed using the optimal solutions for
the subproblems. The subproblems are said to be overlapping when larger problems share a
number of smaller subproblem instances, thus permitting each subproblem instance to be ex-
plicitly evaluated exactly once, and then memoised (remembered) and recalled as and when
the subproblem solution is needed again.

The sequence alignment problem, using a substitution scoring matrix and any of the three
gap penalty functions discussed in the previous section, exhibits both these properties, permit-
ting the application of a DP algorithm (Needleman and Wunsch, 1970; Gotoh, 1982; Lipman
and Pearson, 1985). Specifically, considering the alignment of two proteins S and T:

Optimal substructure: The alignment of the prefixes S1..i:T1..j of the two protein sequences
depends on the optimality of its subproblems: (1) the alignment of S1..i−1:T1..j−1 (followed
by a match of the amino acids Si:Tj), (2) the alignment of S1..i:T1..j−1 (followed by a
deletion of the amino acid Tj) and (3) the alignment of S1..i−1:T1..j (followed by an
insertion of the amino acid Si).



18 CHAPTER 2. PROTEINS AND THEIR ALIGNMENT

Overlapping subproblems: In the above subproblem structure, many subproblems overlap.
For instance, the subproblems S1..i:T1..j and S1..i+1:T1..j+1 share the same optimal solu-
tions of subproblems S1..k:T1..l ∀1 ≤ k ≤ i, 1 ≤ l ≤ j. These overlapping subproblems
are computed exactly once and reused whenever needed later on.

The earliest application of DP for string comparison was by Levenshtein (1966) who intro-
duced the notion of edit distance (now sometimes called Levenshtein distance). For biological
sequence comparison, Needleman and Wunsch (1970) and Smith et al. (1981) applied a Dynamic
Programming Algorithm (DPA) to address the global sequence alignment and local sequence
alignment, respectively.

In the mechanics of aligning sequences S and T using a DPA, a memoisation (history)
matrix, denoted by Hist, is maintained, of size (|S|+1 × |T|+1). Any cell Hist(i, j) records the
optimal alignment score between the prefixes S1..i and T1..j.

As we saw above, there are three ways to derive the optimal alignment at cell (i, j): (1)
using the optimal value in the cell (i − 1, j − 1) to compute the optimal alignment ending in
a match between the symbols Si and Tj, (2) using the optimal value in the cell (i, j − 1) to
compute the optimal alignment ending in a deletion of symbol Tj, or (3) using the optimal
value in the cell (i − 1, j) to compute the optimal alignment ending in an insertion of symbol
Si.

Note, an alignment problem can be formulated as maximising the alignment score or min-
imising the alignment cost/distance. This section explores various formations of the DPA as a
maximisation problem, given a substitution matrix L and varying gap penalty functions.

Using a linear gap penalty function of the form Γ(l) = g × l, the DPA can be formalised
using following recurrence relationships:

Hist(i, j) = max


Hist(i− 1, j − 1) + L(Si,Tj)

Hist(i− 1, j) + g

Hist(i, j − 1) + g

where L(Si,Tj) is the substitution score for matching the two amino acids Si and Tj, and
g< 0 is a per-symbol gap penalty parameter under the linear gap model.

In terms of algorithmic complexity, this DP algorithm requires O(|S||T|) time and space
to compute. Once the matrix filling is complete, an optimal alignment can be generated by
tracing back the optimal derivations made at each cell, starting from (|S|, |T|) to (0, 0), which
takes an additional worst-case time of O(|S|+|T|).

A general gap penalty function Γ(·) is said to be sub-additive when Γ(l1+ l2+ ... + ln) <
Γ(l1) + Γ(l2) +...+ Γ(ln) ∀li > 0. The concave gap penalty function and the affine gap penalty
function are both sub-additive. Thus, using these gap penalty functions and a substitution
matrix L, a general DPA recurrence can be defined by exploring gaps of varying lengths for
each subproblem, as follows (Needleman and Wunsch, 1970; Gusfield, 1997; Miller and Myers,
1988):

Hist(i, j) = max


Hist(i− 1, j − 1) + L(Si,Tj)
i

max
k=1

Hist(i− k, j) + Γ(k)

j
max
k=1

Hist(i, j − k) + Γ(k)

A straightforward implementation of these recurrences results in the worst-case run-time com-
plexity of O(|S|2|T| + |S||T|2). However, Miller and Myers (1988) have proposed a faster
O(|S|2 log(|T|) + log(|S|)|T|2) time algorithm.
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Specifically for affine gap function, Gotoh (1982) presented a time-efficient DP recurrence.
It utilises the three-state nature of an alignment over match (m), insert (i) and delete (d)
states. In this DPA, the alignment of prefixes (subproblems) ending in each of these states are
represented using three different history matrices: Histm, Histi and Histd. That is, each cell
(i, j) of matrix Histm corresponds to an alignment of prefix S1..j and T1..i ending in a match
state. Similarly, Histi(i, j) and Histd(i, j) relates to those prefixes ending in an insertion and a
deletion, respectively. Thus, the affine gap penalty function can be employed using the following
DP recurrence relation for each of the three matrices.

Histm(i, j) = max


Histm(i− 1, j − 1) + L(Si,Tj)

Histi(i− 1, j − 1) + L(Si,Tj)

Histd(i− 1, j − 1) + L(Si,Tj)

Histi(i, j) = max


Histm(i− 1, j) + gopen

Histi(i− 1, j) + gextend

Histd(i− 1, j) + gopen

Histd(i, j) = max


Histm(i, j − 1) + gopen

Histi(i, j − 1) + gopen

Histd(i, j − 1) + gextend

As with the linear model, DPA with affine gap function requires O(|S||T|) space and time,
although with a larger constant factor.

Smith et al. (1981) modified the global sequence alignment algorithm of Needleman and
Wunsch (1970) to address a variant of this problem, termed the local alignment problem,
of identifying subsequences of proteins that are related. Consequently, the DPA requires a
minor alteration in the recurrence relations that enables identifying such local regions. This
variation enforces the algorithm to always select a non-negative alignment score at each cell,
by introducing an additional case of a 0 alignment score. While global alignment finds an
overall optimal alignment, possibly with longer stretches of low similarity regions aligned, local
alignment aims for locally conserved regions by optimising in the local vicinity (Altschul et al.,
1990; Needleman and Wunsch, 1970; Smith et al., 1981). The trace-back to obtain the local
alignment starts from the cell with the maximum score until a cell with 0 score is reached.

Test for Alignment Significance

Alignment scores require a test statistic for alignment significance to differentiate between
related and unrelated proteins (Durbin et al., 1998). The key question is: how likely it is to see
a certain optimal alignment score by chance?. This calls for a classical statistical significance
test. A null model is required for this purpose (i.e. the model in which the proteins are
deemed unrelated with each other). Thus, the criterion targets to evaluate the likelihood of
an alignment score under a null model. Commonly, P-value statistic is used for this purpose,
attempting to estimate the probability of receiving an alignment score at least as extreme as
under a null model distribution of scores.

Karlin and Altschul (1990) published some important statistics to allow for an empirical
model based statistical significance test for local alignment. They found that the distribution
of optimal local alignment scores for ungapped alignments between unrelated sequences ap-
proximately follows a Gumbel distribution.3 It builds on the following approximation: Given

3The Gumbel distribution is a type of skewed continuous probability distribution coming under the family
of Extreme value distribution, with two parameters defining its probability density function.
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two random sequences with lengths m and n, the number of local alignments with a score
x ≥ S is said to be Poisson distributed with a mean statistic of Kmne−λS with two parameters
K,λ > 0. This is known as the e-value which gives the expected number of distinct optimal
local alignments with a score of at least S (Altschul et al., 2001). The smaller the e-value value
is, the more statistically significant the local alignment score S is. Under the Gumbel distribu-
tion, the p-value provides the probability of observing any score x greater than the score S is
Pr(x ≥ S) ≈ 1−eKmne−λS . This has become a basis for reporting statistical significance of local
alignments (e.g. in BLAST (Altschul et al., 1990) and FASTA (Pearson and Lipman, 1988)).
Later, similar observation was noted for gapped local alignments by Levitt and Gerstein (1998),
as well as for global alignments by Bastien and Maréchal (2008).

2.4.3 Probabilistic Hidden Markov Model for Sequence Alignment

A Pair Hidden Markov Model (HMM) provides a rigorous approach to address the pairwise
alignment method. This approach uses the three-state machine to formulate the task as a
hidden Markov process in probabilistic terms. The concepts underlying HMMs have been
comprehensively discussed by Durbin et al. (1998), and been applied in many HMM based
alignment programs (e.g. HMMER (Eddy, 1998) and ProbCons (Do et al., 2005)). They also
proposed ways to generate alternate alignments rather than just optimal ones. A comprehensive
discussion of pair HMMs and their correspondence with conventional alignment scoring has been
presented in the recent work of Frith (2020). The core ideas that Pair HMM utilises arose earlier
in the MML literature on DNA sequence alignment problem due to the work of Allison and
Wallace (1994); Yee and Allison (1993).

Pair HMM defines a state space Ω = {m, i, d}, an initial state probability vector, a state
transition probability matrix, the observed symbol space over the 20 amino acid types, and
their emission probability matrix. The state m emits a pair of amino acids, whereas states i

and d emit amino acid symbols for the respective gap regions. The next state to transmit and
the current emission both depend only on the current state (making the process memoryless).
Accordingly, any state sequence generated through this HMM model is an alignment path which
can describe the observed pair of sequences. Given a fully parameterised pair HMM model and
two observed sequences, S and T, an inference problem involves two independent tasks: (1)
scoring and (2) decoding.

Scoring: refers to the evaluation of a state sequence (an alignment path) under the given
HMM model. This includes:

• Single-path scoring: the joint probability of an alignment π and the sequences:

Pr(π,S,T)

• All-path scoring: the full joint probability of the sequences summing over all possible
alignment paths (i.e. marginal probability):

Pr(S,T) =
∑
π

Pr(π,S,T)

This can be computed by applying the forward algorithm: a dynamic programming pro-
cedure to compute Pr(S1..i,T1..j, πt = l): the joint probability of the corresponding pair
sequence prefixes and any alignment path between them which ends in state l, leading to
Pr(S,T, π|π| = l) for any state l ∈ Ω. Finally, Pr(S,T) =

∑
l∈Ω

Pr(S,T, π|π| = l).
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Decoding finds the best path that describes the observed pair of sequences. This includes:

• Single-path decoding: defines the the most probable alignment path that optimises
the single-path joint probability:

argmax
π

Pr(π,S,T)

This is obtained using the Viterbi algorithm, a dynamic programming algorithm that
takes argmax

l∈Ω
{Pr(S1..i,T1..j, πt = l)} into account.

• All-path decoding/posterior decoding: results in the path π which has the most
likely state for each position t in the state string, by computing:

argmax
k∈π

Pr(πt = k|S,T)

This posterior probability can be computed using forward-backward procedure, where

Pr(πt = k,S,T) = Pr(S1..i,T1..j, πt = k)︸ ︷︷ ︸
forward

Pr(Si+1..|S|,Tj+1..|T||πt = k,S1..i,T1..j)︸ ︷︷ ︸
backward

for Pr(πt = k|S,T) = Pr(πt=k,S,T)
Pr(S,T)

.

The all-path decoding strategy is applied to find Pr(πt = match|S,T) the probability of
matching a certain pair of amino acids: Si,Tj, given the entire two sequences, using the
above forward-backward procedure and the full joint probability of sequences. As a result,
it allows searching for the alignment path which maximises this posterior probability
for each residue pair (consequently maximising the probability of the state sequence).
Separately, Pr(πt = insert|S,T) can be considered as well. However, this does not
guarantee a well-formed feasible alignment (Eddy, 1998). Instead, an alternative method
has been presented for maximising the expected accuracy of an alignment. Given an
alignment π, the expected accuracy is defined as:

A(π) =
∑

(i,j)∈π
Pr(Si matches Tj)

This is simply the sum over all aligned pairs represented by the alignment string. The
maximisation is performed by following the conventional dynamic programming algorithm
with following DP recurrence relations.

M(i, j)=max


M(i− 1, j − 1) + Pr(xi matches yj)

M(i− 1, j)

M(i, j − 1)

Nonetheless, it disregards the possible consideration of any unspecified state (i.e. which
could be either a match, insert, or delete).
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Parameters of a pair HMM model is usually inferred either through an Expectation-Maximisation
approach such as Baum-Welch and Viterbi training, or upon a known dataset of pairwise align-
ments (Allison et al., 1992b; Eddy, 1998; Truszkowski and Brown, 2011). Further HMM meth-
ods are notably discussed by Holmes (1998), highlighting the importance and incorporation of
evolutionary time-dependent substitution models and gap models.

In addition to the generative pair HMM probabilistic model, some have also looked at
applying a discriminative model such as pair conditional random field (e.g. CONTRAlign (Do
et al., 2006)). This is a notable method for pairwise protein alignment by Do et al. (2006)
as they implemented an unsupervised parameter estimation by optimising both substitution
matrix and gap penalties, effectively over a very few example alignments. They additionally
aims for a trade-off between model fit and complexity, by controlling the complexity through a
set of regularisation parameters.

Finally, at a high-level, the above probabilistic methods share broad similarities with the
general approach explored in this thesis. In other words, the pair HMM methods provide
the potential to infer probabilistic parameters of alignments, explore sub-optimal (competing)
alignments and compute marginal probability models. However, the similarities end there.
The minimum message length framework and the rigour it provides for inductive inference
make this attempt markedly different from the above, and relies on ideas that link statistical
inference with lossless data compression. Furthermore, the MML parameter estimation and
the way complexity-versus-fit trade-off is addressed distinguishes this attempt considerably. In
fact this thesis is a continuation of the line of research originally proposed for DNA sequence
alignment by Allison et al. (1992b); Yee and Allison (1993); Allison and Wallace (1994); Powell
et al. (2004), and extended here to protein sequences along with the unsupervised inference of
a complete set of statistical models supporting this formulation (discussed in Chapter 4).

2.4.4 Database Search

With the advent and rapid progression of protein sequence databases, there is a need to swiftly
search over all sequences in a target database, to find similar sequences to a query sequence.
Running a pairwise DPA between the query and every sequence in the database comes with
a heavy computational effort. Therefore, heuristic approaches aim to approximate an optimal
alignment, and reduce the computational effort by orders of magnitude (Altschul et al., 1990).
Methods to search large sequence databases make a trade-off between speed and sensitivity
(Altschul et al., 1997). Often these methods rely on identifying significant seeds to construct
local, ungapped alignments. Such seed represents a diagonal segment in the dot-plot between
the sequences in comparison. Below summarises two popular heuristic search algorithms, mainly
for local alignment.

Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990)

BLAST defines a segment pair for seeding. A segment pair is a same length substring alignment
of contiguous residue stretches amongst two sequences. A high scoring segment pair (HSP)
refers to a one with a significantly higher score, indicating locally conserved regions. Two
proteins may have several HSPs. A maximal segment pair (MSP) refers to the one that cannot
be improved in its score by further extension or shortening. BLAST heuristically searches for
all locally maximal segment pairs above a predefined threshold score. The process first breaks
down a query protein into k-mers of length 3 (3-mer). Next, using a scoring matrix, each
3-mer is scored against all of the possible 3-mer combinations comprised of the three amino
acid residues present in it (including the identical match 3-mer). Only the matched 3-mers
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having at least some threshold score is kept in record. Then, each target sequence is scanned
against each recorded 3-mer for an exact match. Originally, BLAST takes such match as a seed
for a possible ungapped alignment and extends it in both directions along the sequence until
the segment score stops increasing further and starts dropping under some predefined value
compared to the maximum score so far. An extended seed is accepted and reported as an HSP
only if it is statistically significant. The e-value as described in §2.4.2 is useful for this, with
the length parameters being the query sequence length and the sum length of all sequences
in the database. In case of multiple HSPs, each is reported as an individual, ungapped local
alignment. Later version ((Altschul et al., 1997; Tatusova and Madden, 1999)) aggregates all
accepted HSPs to form a single, gapped alignment. Further modification joins seeds within a
short distance on the same diagonal to be a single seed, and extend it further for getting an
HSP. Next banded DP is applied to obtain a single, gapped alignment containing all accepted
HSPs (Altschul et al., 1997; Mount, 2007). Later, several other variants of BLAST including
the Position-Specific Iterative BLAST (PSI-BLAST) were also introduced.

FASTA (Pearson and Lipman, 1988)

FASTA was introduced along with the legacy protein sequence file format FASTA (FAST-All).
It is a four step search algorithm for scoring pairwise sequence similarity with a parameter called
ktup. First it finds identically matched regions of length ktup between two protein sequences
(Note: ktup is 1 or 2 for proteins) using a look-up table. The best diagonal regions of matches
are selected based on the number of matches and their distances. Next, the selected matches
are scored using a scoring matrix. Matches with scores greater than a predefined threshold
score are then joined optimally. Finally, dynamic programming based global or local alignment
is performed over a banded region centered around the highest scoring initial region.

2.4.5 Multiple Alignment

Multiple protein sequence alignment targets an alignment of more than two proteins, general-
ising the pairwise alignment problem. This is useful in constructing representative profiles for
families of related proteins, and phylogenetic trees. A multiple alignment can be scored simi-
larly as in pairwise alignment, by summing up scores for all possible pairs. However, dynamic
programming for score optimisation becomes computationally expensive and intractable as the
number of sequences grow more than two. Therefore many current methods use heuristics for
the purpose (Venclovas, 2011). One common approach is progressive alignment (Hogeweg and
Hesper, 1984; Feng and Doolittle, 1990). The general idea is to first compute alignment scores
for all possible sequence pairs, forming a distance matrix. Based on that, a guide tree is built
using a hierarchical clustering method. The tree then directs progressive alignment, starting
from most similar pairs to least similar pairs. Idea is to take each node of the tree in the order
of their insertion to the tree, and align their child nodes (Durbin et al., 1998). Well known
progressive sequence alignment algorithms include ClustalW (Larkin, 2007), MAFFT (Katoh
et al., 2002) and T-Coffee (Notredame et al., 2000). MUSCLE was suggested by Edgar (2004)
for an iterative refinement of alignments, to address the propagation of error during each step
of progressive alignment. Other methods include profile HMM based models (e.g. HMMER
(Eddy, 1998)).
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2.5 Limitations in Sequence Alignment

Below discusses the key limitations and shortcomings we see in the present state of the art of
protein sequence alignment.

Ad hoc parameter choices

In common practice, alignment programs are used with ad hoc parameter choices, and yield
radically different results under different parameter settings. As discussed in §2.4.1, sequence
alignments depend on the selection of (1) a substitution scoring matrix, and (2) a gap penalty
function. However, the choice of the scoring matrix is often made with little or no attention
given to the divergence of sequence-pairs that are being aligned. In principle, the degree of
evolutionary divergence should be amongst the parameters inferred during the alignment pro-
cess. Instead, most users resort to using a ‘general-purpose’ substitution matrix, for example
BLOSUM-62 (Henikoff and Henikoff, 1992) or PAM-250 (Dayhoff et al., 1978). To compound
the problem, the parameters of the chosen gap penalty function is another source of arbitrari-
ness. In practice, users are left to fiddle with these penalty parameters and make them work
with their chosen substitution matrix. Previous studies have highlighted this as a “trial and
error based exercise” (Do et al., 2005; Vingron and Waterman, 1994). It is not entirely un-
common for alignment programs to be driven on default gap parameters that come with a
chosen substitution matrix. Such decisions are at best empirical, if not anecdotal (based on the
reported values in the literature) or arbitrary.

Indeed, finding the optimal settings for alignment runs is challenging. Previous studies
have sought to systematically explore the space of alignment parameters when searching for
an optimal alignment (Vingron and Waterman, 1994; Barton and Sternberg, 1987; Fitch and
Smith, 1983; Blake and Cohen, 2001). However, along with the other drawbacks (see below) in
the objective function that is commonly optimised, an exhaustive search is inefficient.

Handling of ‘complexity-versus-fit’ trade-off

The general class of inference problems in which one infers propositions/hypotheses on observed
data necessarily have to address the trade-off between the complexity of the proposition and
its fit to the data. It is observed that the alignment problem is an instance in this class of
problems. Hence it is unavoidable for any method to infer alignment relationships on observed
sequence data to deal with how complex an alignment is versus how well it describes the
data. In the common formulations of the sequence alignment objective function that relies on
substitution scores and gap costs, this score-versus-cost scheme provides only an unprincipled
and approximate way of addressing the aforementioned trade-off. A more systematic way of
addressing this trade-off is a desirable property for any alignment framework to possess, and
hence is one of the shortcomings.

Disconnect between models addressing substitutions and models addressing inser-
tions and deletions

Another major lacuna is the disconnect between models for amino acid substitutions and those
handling insertions and deletions. Gonnet et al. (1992) emphasises the importance of using
matrices suitable for the optimal evolutionary time between the proteins being compared, for
each individual run. Markov models (matrices) of amino acid substitutions (E.g. PAM (Dayhoff
et al., 1978)) suggest an elegant way to model protein sequence evolution through substitutions,
and implicitly define a notion of divergence; however the choices of gap penalty parameters to
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go with these matrices are usually hand-tuned without solid mathematical support (Blake
and Cohen, 2001; Vogt et al., 1995; Gonnet et al., 1992; Chang and Benner, 2004; Benner
et al., 1993). Holmes (1998) discusses the value of incorporating substitution models and gap
models parameterised on evolutionary time in the context of HMMs. A reliable set of statistical
models that are able to directly connect the models of amino acid substitutions with models
that address insertions and deletions, and adapt in concert to address alignments across the
spectrum of sequence relationships would be a useful milestone in the sequence alignment state
of the art.

Lack of a framework to systematically explore competing alignments

Alignment programs often report only a single optimal alignment, overlooking other closely-
competing alignments. Previous studies have acknowledged the importance of exploring the
sub-optimal alignment space or taking all possible alignments into account, suggesting a few
approaches to overcome this scenario (Rosenberg, 2009; Durbin et al., 1998; Rost, 1999; Re-
delings and Suchard, 2005; Do et al., 2005; Levy Karin et al., 2018). However, the optimal
alignment under current objective functions and ad hoc parameter choices makes methodical
explorations of closely-competing alignments and sequence relationships very difficult, if not
impossible. (Note: An optimal alignment under some objective function may not always be the
one that captures the true evolutionary relationship between the proteins (Fitch and Smith,
1983)). A systematic framework where alignments can be rigorously compared (with proba-
bilistic support) and allow users to differentiate between competing alignments, is lacking.

Further, as noted in §2.3, capturing relationships of the twilight zone pairs of protein se-
quences continues to be a challenging problem in the current state of the art. Recent sequence
aligners attempt to address this difficulty by incorporating heuristics/additional sources of in-
formation (Do et al., 2006; Larkin, 2007; Edgar, 2004; Al Ait et al., 2013), or even allowing
partial user-intervention to define reference (anchor) points as a guide to alignable regions
(Al Ait et al., 2013), or to manually calibrate gap placements (Chang and Benner, 2004). Yet
it requires some extra manual effort by a user to come up with a sensible sequence alignment.

This thesis is motivated to address the aforementioned shortcomings

This thesis is an attempt to rectify the limitations discussed above. Specifically, Chapter
4 lays the foundations of a statistical framework to address the protein sequence alignment
problem under the Bayesian and information-theoretic criterion of Minimum Message Length.
The framework provides useful statistical properties for unsupervised inference of alignments,
without making user-specified choices, and by systematically handling the complexity versus
fit trade-off. The thesis further shows how competing alignments can be explored and visu-
alised. Chapter 5 extends this framework by utilising divergence-time-dependent substitutions
and gaps under an existing substitution model, to address the disconnect in their treatment.
Chapter 6 presents methods to fully learn new models of amino acid substitution and associated
gaps from any given benchmark of protein alignments.

BC
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Chapter 3

Statistical Inference with Information
Theory

“The best explanation of the facts is the shortest”

– Chris S. Wallace

This chapter presents the statistical foundations that underpin the research in this thesis.
It covers an introduction to probabilistic modelling, Information theory and a discussion on the
general method of statistical inductive inference using the Minimum Message Length (MML)
criterion. All concepts covered here provide building blocks for the design and development of
the proposed MML framework, to model and address the protein sequence alignment problem
described in the succeeding chapters.

3.1 Primer on Probability

3.1.1 Basics

The probability Pr(.) of an outcome is a measure of its uncertainty. The space of outcomes
Ω can be either discrete or continuous. Accordingly, the associated random variable X over
the outcomes is either discrete or continuous. For a discrete sample space, a probability mass
function (PMF) conveys the probability for each value of X. The law of probability ensures
that

∑
∀xi∈Ω Pr(X = xi) = 1. The expected value of X, denoted as E(X), to be observed on

average under a PMF is given by
∑

xi∈Ω xi · Pr(X = xi).
On the other hand, for a continuous random variable X, a probability density function

(PDF) f(X) explains how the relative-likelihood varies with X. Unlike PMF, PDF does not
define an absolute probability for a single X value.1 Using a PDF, the probability that X falls
within a certain range is the area under the function within the range. Again,

∫
∀x∈Ω

f(X = x)
= 1. For real valued sample space, the expectation E(X) =

∫
∀x∈Ω

x · f(X = x).
Many different probability models have been recognised and formulated to describe various

events and their outcomes. For instance, the binomial distribution is a discrete probability
model that can explain the number of ‘successes’ of an experiment with independent binary

1The absolute likelihood of a continuous value is considered 0, as the precision at a single point is infinite.
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outcomes (e.g. coin toss). The geometric distribution models the number of consecutive inde-
pendent trials needed until a certain success outcome is observed. As for continuous probability
distributions, a well known example is the Normal (Gaussian) distribution which is used to
model many natural processes. In addition, exponential distribution families (such as the pre-
viously encountered Gumbel distribution in §2.4.2) and Dirichlet distribution are widely used
for diverse modeling purposes. A probability model may have different statistical parameters
to specify aspects such as its overall shape, variance, location and skewness. For example, the
normal distribution has mean and standard deviation parameters which control its bell shaped
curve.

Probability theory describes the following well-known laws.

Suppose a joint occurrence of two events denoted by two random variables X and Y , pro-
ducing X = xi and Y = yj outcomes. Their joint probability is defined by the product rule
as,

Pr(X = xi, Y = yj) = Pr(X = xi) · Pr(Y = yj |X = xi) (3.1)

= Pr(Y = yj) · Pr(X = xi |Y = yj) (3.2)

Here, Pr(X = xi |Y = yj) or Pr(Y = yj |X = xi) denote the respective conditional probability
(the occurrence probability of one event given the occurrence of the other). If the two events
are independent, this converts simply into the product of individual occurrence probabilities
as:

Pr(X = xi, Y = yj) = Pr(X = xi) · Pr(Y = yj)

The “total law of probability” gives the total or marginal probability of any event (Pr(X =
xi) or Pr(Y = yj)) as the summation (if discrete variable) or integration (if continuous variable)
over all possible outcomes of the other event:

Pr(Y = yj) =
∑
∀xi∈ΩX

Pr(X = xi) · Pr(Y = yj |X = xi) (3.3)

Pr(X = xi) =
∑
∀yj∈ΩY

Pr(Y = yj) · Pr(X = xi |Y = yj)

.

3.1.2 Bayes Theorem

Following the above fundamental rules of probability, Bayes (1763) presented the below formula
as the Bayes theorem:

Pr(X = xi |Y = yj) =
Pr(X = xi, Y = yj)

Pr(Y = yj)
(3.4)

illustrating the relationship between conditional, joint and marginal probabilities.

Bayes theorem forms the backbone for Bayesian inference. It gives a degree of belief inter-
pretation to the probability of an event based on evidence.
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Applying Equations 3.1 and 3.3 to the above, we get:

Pr(X = xi |Y = yj)︸ ︷︷ ︸
Posterior

=

Prior︷ ︸︸ ︷
Pr(X = xi) ·

Likelihood︷ ︸︸ ︷
Pr(Y = yj |X = xi)∑

∀xi∈ΩX

Pr(X = xi)·Pr(Y = yj |X = xi)︸ ︷︷ ︸
Marginal

(3.5)

The term prior reflects the amount of belief we put into the occurrence of an event before its
occurs. Prior probabilities are commonly modelled using prior evidence. As an example, given a
long sequence of symbols over a sample space of discrete categorical states (E.g. the amino acid
alphabet), the observed frequencies inform the prior probabilities of these symbols (expected
to be observed in the future). On the other hand, in the absence of such prior evidence, one
might fall back on a bland uniform prior probability.

Likelihood informs the likelihood of Y = yj, as the conditional probability of observing its
occurrence given the occurrence of X = xi. Posterior probability acts as an update to the
prior belief Pr(X = xi) upon seeing new evidence of it in terms of Y = yj. In other words, it is
the probability of Y = yj given X = xj. When the prior probability distribution and posterior
probability distribution belongs to the same family of probability distributions, they are called
conjugate probability distributions.

3.2 Primer on Information Theory

3.2.1 Information and Encoding over a Message

Information is what reduces our uncertainty (Wallace, 2005). Intuitively, the higher the prob-
ability of some event, the lesser the amount of information required to communicate that event
lossslessly, and vice versa. Conceptually, information is a communication between a transmitter
and a receiver, in the form of a message. A message can convey any number of events, encoded
using a dictionary that maps each possible event to a codeword. Thus a message can be viewed
as a concatenated string of codewords encoding a given set of data.

The communication ensures a lossless transmission of the message. This means the encoded
message is completely reversible to extract original data by the receiver through a process of
decoding. The details of encoding-decoding is based on a codebook that includes general things
such as the codeword dictionary and agreed conventions of communication etc. For example,
a DNA string ACCGAATAAA can be encoded using a fixed length coding scheme: <A = 00, C

= 01, G = 10, T = 11> with 2-bit codewords. Here, the receiver exactly knows to extract
codewords every 2-bits for decoding.

3.2.2 Information Content and Entropy

In 1948, Claude Shannon in his seminal work “A Mathematical Theory of Communication”
(Shannon, 1948) established the formal principles of optimal lossless data transmission. He
defined a measure of information content I(E) for any event E, based on the event’s uncertainty:

I(E) = − log2 (Pr(E)) bits (3.6)

Also known as Shannon information, this provides a lower bound to the optimal codeword
length required to losslessly encode this event in a message, under the probability model given
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by Pr(·). Note that the base of the logarithm defines the unit of measurement.2 (All Information
measures throughout this thesis will be considered in bits, unless stated otherwise).

Further, Shannon entropy H measures the expected codeword length per event under the
encoding scheme as follow:

H =
∑
∀E∈Ω

Pr(E)I(E) bits per event (3.7)

Entropy can be a basis for comparing two encoding systems as it informs how economical a
coding scheme is.

3.2.3 Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence, denoted by DKL, informs a measure of relative entropy
needed for encoding data over a probability model p(·) relative to another probability model
q(·).

DKL[p, q] =
∑
∀E∈Ω

p(E) log2

(
p(E)

q(E)

)
bits per event (3.8)

where DKL[p, q] ≥ 0. This divergence measure is useful for evaluating one probability model
against another. However it is not a strict distance metric since it is non-symmetric (DKL[p, q] 6=
DKL[q, p]) and does not always satisfy the triangle inequality. We do have DKL[p, q] = 0 if and
only if p = q.

3.2.4 Fixed-length Codes, Variable-length Codes and Adaptive Codes

From Equation 3.6, a fixed-length coding scheme results from a uniform probability distribution
over the sample space. For example, 2-bit codewords in the previous example dealing with E
∈ {A,C,T,G} all yield a uniform probability of 1

22 = 0.25 probability, as it assumes that the
true distribution that generate these symbols is uniform. When this assumption does not hold,
a variable-length coding scheme is more efficient (i.e. concise). The variable-length coding
scheme requires a more complex method (compared to fixed-length coding scheme) of decoding
the codes correctly. A common method in data compression is to ensure one codeword is not
a prefix of another. Such scheme is known as prefix-free coding system.

Huffman coding (Huffman, 1952) is a prefix-free code system where all unique paths from a
root to the leaves in a binary tree constructed based on the probabilities, account for variable
length binary codes of each symbol. It ensures that more probable symbols are assigned shorter
codewords, and those that are less probable get assigned longer ones.

Adaptive encoding is an approach for dynamically updating the coding scheme, that is useful
for estimating the message lengths of multi-state strings. Initially, both sender and receiver
agree on a prior probability model for each state in the state space. As the transmission proceeds
with each successful transmission of a single event, both parties update their probability models
using a set of counters maintained to keep track of the number of times each possible event
has been observed so far (Cleary and Witten, 1984). The adaptive encoding scheme works as
follow: the sender encodes the first symbol of the sequence with an initially agreed probability,
while updating the relevant counter. The receiver can decode this symbol using the agreed

2Base-2 logarithm gives the measure in bits, base-10 in dits, base-e gives nits etc.
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Table 3.1: How adaptive encoding works: At time t = 0, the counters are set to 1 (representing
an initial pseudocount for each possible state in the state space Ω). As the time passes, at each
discrete time point t, an observation of some state sx ∈ Ω is made at some t = i. Each state
sx ∈ Ω has the counter cx which is always updated upon its observation at some time t. At
t = N , we have N total number of state observations (i.e. the length of the state sequence
observed so far is N). Accordingly, at any time t = i, the encoding probability of state sx is:(nsx
k+i

)
, where nsx is the number of sx state observations so far.

At time t = 0 t = 1 t = 2 t = 3 t = N
o1 o2 o3 oN

Counters Pseudocount s2 s1 s2 . . . s3

c1 1 1 2 2 . . . ns1 + 1
c2 1 2 2 3 . . . ns2 + 1
c3 1 1 1 1 . . . ns3 + 1
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
ck 1 1 1 1 . . . nsk + 1

Count sum k k + 1 k + 2 k + 3 . . . k +N

model and then update the counter. Now both sides have new probabilities to continue the
encoding and decoding process.

For instance, suppose a general multi-state model with a state space Ω = {s1, s2, ...sk} of size
k is applied to encode a sequence S = (s2s1s2 . . . s3). Table 3.1 illustrates how dynamic coding
works with counters {c1, c2, ...ck} for all k states, initially setting to 1 (i.e. uniform model) as
the agreed model. A column oi gives the counter update upon seeing ith state observation in
the sequence. There, any nj refers to the number of jth state observations so far, and N is the
total number of observations so far.

The total message length of S under adaptive encoding is given by:

I(S) = − log2

(ns1)!(ns2)!...(nsk)!(
(k+N−1)!

(k−1)!

)
 bits (3.9)

3.2.5 Variable-length Code for Integers

This section discusses variable-length encoding of any integer n ∈ Z, specifically Wallace tree
codes (Wallace and Patrick, 1993). As seen in later chapters, the research in this thesis utilises
these variable-length integer codes.

An integer coding scheme becomes universal when the true probability distribution satisfies
Pr(n) ≥ Pr(n + 1) and the |codeword(n)| < −c. log [Pr(n)] (within a linear scaling of the
expected optimal code length) for some constant c (Elias, 1975).

Wallace and Patrick (1993) proposed a universal, prefix free integer encoding scheme by
mapping integers to the countable set of strict binary trees (where each internal node has
exactly two children). The number of possible strict binary trees over k internal nodes is given
by the Catalan number Cn:

Ck =
1

k + 1

(
2k
k

)
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Figure 3.1: Wallace tree code construction for integers(Wallace and Patrick, 1993) (Note: Order
of tree permutation construction gives priority from left to right)

Thus, the set of positive integers n = 1, 2, 3 . . . can be mapped to the the set of strict binary
trees with progressively increasing number (k = 0, 1, 2, . . .) of internal nodes. For any fixed
k, there are Ck number of positive integers distinctly mapped to corresponding strict binary
trees with k internal nodes. The codeword for the mapped integer is simply the pre-order
traversal of its corresponding strict binary tree, where the internal nodes denote 0 and leaf
nodes denote 1 in the traversal. Thus, if the corresponding binary tree has k internal nodes,
the mapped codeword takes 2k + 1 bits in lengths to represent. Thus, from this process, a
perfectly decodable variable-length integer codes can be derived with attractive asymptotic
properties (Allison et al., 2019).

Although, the resultant set of variable-length integer codes from this mapping is over
positive integers, they can be mapped to a non-negative integer set by shifting the code-
assignments to start from n = 0 instead of n = 1 (see Figure 3.1). Further, the positive
integer codes can be mapped to any countable set, for example, the set of all integers ordered
as {0, 1,−1, 2,−2, 3,−3, . . .}.
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3.3 Minimum Message Length Paradigm for Model Se-

lection

The Minimum Message Length principle (MML)(Wallace and Boulton, 1968; Wallace, 2005)
lays the groundwork for statistical inductive inference with Information theory. It provides a
Bayesian framework for model comparison, selection and parameter estimation.

MML is best understood as a communication of a two-part message between a hypothetical
sender and receiver. A sender encodes and transmits a hypothesis (model) H (in the first
part) and then some observed data D under the assumption that H is true (in the second
part). This communication is based on a properly defined lossless communication protocol over
a set of agreed rules (the codebook). The codebook also contains common knowledge and any
preconceived notions regarding the data being transmitted. This ensures a message composition
that encompasses all information necessary for its complete decodability at the receiver end.

This framework combines Information theory with Bayesian statistics. It reformulates the
Bayes theorem (Bayes, 1763) in information-theoretic terms (Shannon, 1948). Building on the
introduction to Bayes theorem in §3.1.2, the joint probability of any hypothesis H explaining
the data D can be defined using the product rule as:

Pr(H,D) = Pr(H)Pr(D |H)

Applying logarithm on both sides of the above rule, and reinterpreting it in terms of the
Shannon information content defined in §3.2, this rule can be seen as the lossless encoding
length of communicating the hypothesis H and data D given H:

I(H,D) = I(H)︸ ︷︷ ︸
First part length

+ I(D|H)︸ ︷︷ ︸
Second part length

(3.10)

In this framework the best and the optimal hypothesis (model) H∗ is the one that minimises
I(H,D) as the objective function. This formulation therefore allows comparing any two com-
peting hypotheses. Given two hypotheses H1 and H2, the difference in message lengths

∆I = I(H1, D)− I(H2, D)

gives their posterior log-odds ratio:

∆I = − log2(Pr(H1, D)) + log2(Pr(H2, D)) = log2

(
Pr(D)Pr(H2 |D)

Pr(D)Pr(H1 |D)

)
= log2

(
Pr(H2 |D)

Pr(H1 |D)

)
bits

If ∆I > 0, this indicates that H2 is 2∆I more likely than H1, otherwise vice versa.
MML provides a natural statistical test of significance:

INULL(D)− I(H,D) > 0 =⇒ Accept the hypothesis

INULL(D)− I(H,D) ≤ 0 =⇒ Reject the hypothesis

That is, any hypothesis H whose encoding length I(H,D) is lesser than a null model message
length (denoted by INULL(D)) is accepted; otherwise rejected. The null model implies a raw
(i.e. as is) encoding of data D without the support of any “interesting” hypothesis.

The MML paradigm includes a trade-off between hypothesis complexity and its fit with the
data. When H is a model with parameters, the first part of the message contains statements
of all of its associated parameter values (to an optimal precision that is resolved under the
MML criterion). The statement length of the hypothesis, I(H), captures this complexity. The
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higher the complexity is, the longer I(H) becomes. The fidelity of the hypothesis to explain the
observed data is captured by the length of the second part, I(D|H). The shorter the I(D|H) is,
the better it is at explaining the data. Hence, MML achieves a good, optimal trade-off between
both hypothesis complexity and fit.

3.3.1 Single Continuous Parameter Estimation using MML

We will now explore the mathematical details of the MML technique of Wallace and Freeman
(1987) to estimate parameters, known as MML87, which forms the backbone of parameter
estimation in this thesis. Specifically, this section will explore the MML87 technique first for
the single continuous parameter case, before generalising it in the next section.

Let θ be a continuous parameter of a statistical model, with a prior distribution h(θ) as
shown in Figure 3.2a. Also let the model explain some observed data D with a likelihood
function L(θ). Under the MML inference framework, search for the optimal parameter value
for θ is formulated as optimising a two-part message length explained in the previous section.

The first part of the message must encode the real valued θ parameter itself. Any real
valued parameter can only be stated to a limited precision, which must be chosen such that
the associated total two-part message is minimised. Suppose the precision of parameter value
is denoted by Aθ. Figure 3.2b illustrates the corresponding continuous range [θ− Aθ

2
, θ+ Aθ

2
] of

uncertainty for θ under MML87. The smaller this region is, the more precise is θ. Under the
MML87 assumption that prior changes slowly in the neighbourhood of any value in the x axis,
the probability of the parameter θ can be estimated as:

Pr(θ) = h(θ)Aθ

Accordingly, the length of the first part message becomes − log2 [h(θ)Aθ].
The second part of the message encodes the data D given the value of θ. As a result,

the message length I(D|θ) is simply given by the negative log likelihood function L(θ) =
− log2 [L(θ)].

Note that the decoder only sees an uncertain region of θ defined with the precision Aθ.
For any value around θ within this region, a corresponding likelihood value exists. Thus, an
expected message length over all those possible values is computed for I(D|θ):

I(D|θ) =
1

Aθ

∫ x=+
Aθ
2

x=−Aθ
2

L(θ + x)dx

MML87 applies the Taylor series expansion to L(θ + x) as:

L(θ + x) = L(θ) + L′(θ)x+ L′′(θ)x
2

2
+O(x3) terms

Truncating the series after the quadratic (x2) term, and applying the integral in the neighbour-
hood of x = θ ± Aθ

2
, results in:

I(D|θ) = L(θ) + L′′(θ)A
2
θ

24

where L′′(θ) is the second derivative of the negative log likelihood function. It is also named
as the empirical Fisher or the Hessian. This figure informs the sensitivity of the negative log
likelihood to the variations in θ (Wallace and Freeman, 1987). A high L′′(θ) value implies a
sharp minimum of L(θ). This means, even a slight variation of θ can increase I(D|θ) quite a
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lot and thus, in such case we prefer a much higher precision for θ. On the other hand, when
the Fisher is small, the radius of the curvature at θ will be larger, indicating less variability
in I(D|θ) for precision errors in θ. Therefore slight increases in L(θ) can be tolerated with
somewhat a less precise statement of θ. For instance, see Figure 3.3.

Consequently, the total message length I(θ,D) is given by:

I(θ,D) = − log2 [h(θ)Aθ] + L(θ) + L′′(θ)A
2
θ

24

(a) (b)

Figure 3.2: Prior distribution h(θ) for the continuous parameter θ

Figure 3.3: This illustrates how the precision of θ affects the computation of expected I(D|θ).
Consider θ1 and θ2 as parameter values reside against a steep valley and flat valley of the
negative log likelihood function, respectively. For θ1, a lower precision (highlighted by the red
region) is less tolerable as it accounts for a higher variation in I(D|θ). On the other hand, a
higher precision for θ1 (highlighted by the green region) works well for computing an accurate
expected value of I(D|θ1), as I(D|θ) does not vary much within that region. In contrast, θ2

can tolerate both lower precision and higher precision for θ, as for both regions, I(D|θ) does
not vary significantly. (Note: Red color refers to less tolerance; Green color refers to more
tolerance)
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This acts as an objective function to choose the optimal θ parameter and its optimal precision

(Aθ). By solving d
dAθ

I(θ,D) = 0, it turns out that Aθ =
√

12
L′′ (θ) , which is dependent on the

empirical Fisher (observed over data D). However the hypothetical receiver is unaware of the
optimal Aθ unless it is encoded within the message. This is impossible since Aθ, as a real
value, should again be stated upto a certain optimal precision. It leads to an infinite regress
of precision statements (Oliver and Hand, 1994). The solution is to use the expected Fisher
instead the observed Fisher, which takes the expectation of L′′(θ) over all possible datasets.
By defining the expected Fisher:

Fisher(θ) =

∫
L(θ) · L′′(θ)dD

the optimal Aθ is found to be
√

12
Fisher(θ)

. Substituting that into the total message length

expression, we get:

I(θ,D) =
1

2
log2

(
1

12

)
+

1

2
log2 [Fisher(θ)]− log2 [h(θ)] + L(θ) +

1

2

Note that, common non-Bayesian methods such as maximum likelihood estimation do not
take into account the optimal precision of parameters nor the complexity involved with every
parameter statement, compared to MML which formulates an honest representation of all
parameters and their complexities.

3.3.2 Multiple Continuous Parameter Estimation using MML

We can generalise the single continuous parameter estimation to higher dimensions, for esti-
mating a continuous parameter vector of the form ~θ = [θ1, θ2, ...θn]. Define prior h(~θ), likelihood

L(~θ|D) and negative log likelihood L(~θ) = − log2 (L(~θ|D)). For the single-parameter case, the
probability of θ within the uncertainty region was simply the associated area under the h(θ)

curve. For ~θ, this is a hypervolume V . Let the precision of ~θ be Vθ
The equivalent total message length is:

I(D, ~θ) = I(~θ) + I(D|~θ) = − log2 (h(~θ)Vθ) + I(D|~θ) (3.11)

Similar to the single-parameter case, we compute I(D|~θ) as the expected message length

over all possible vectors falling in the region of uncertainty around ~θ. It is then expanded
through the multi-variate Taylor series, and truncated after the quadratic term:

I(D|~θ) =
1

Vθ

∫
Vθ

L(~θ + ~x)d~x

≈ 1

Vθ

∫
Vθ

(
L(~θ) + L′(~θ)~x+

~xTL′′(~θ)~x
2!

)
d~x

≈ L(~θ) +
1

2Vθ

∫
Vθ

~xTL′′(~θ)~x d~x

Again, since L′′(~θ) is the observed Fisher matrix, it is replaced by the expected Fisher matrix

Fisher(~θ).

I(D|~θ) = L(~θ) +
1

2Vθ

∫
Vθ

~xTFisher(~θ)~x d~x
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Fisher(~θ) is a square symmetric matrix with an eigen decomposition of SΛS−1, where Λ
is a diagonal matrix with eigenvalues and S is an orthogonal matrix of eigenvectors. The
orthogonality ensures S−1 = ST . Thus, the integral part of the above expression can be
simplified using the following non-linear transformation:

~xTFisher(~θ)~x = ~xTSΛST~x

= ZTΛZ

= ZT
√

Λ︸ ︷︷ ︸
~yT

√
ΛZ︸ ︷︷ ︸
~y

= ~yT~y

where Z = ST . This permits a spherical reparameterisation that transforms Vθ into a new
hypervolume Uθ, with ~y =

√
ΛST~x. Therefore, the associated differential volume Uθ

Vθ
is given

by the determinant of the Jacobian matrix d~y
d~x

= det[
√

ΛST ]. This expression can be further
simplified as follows:

det[
√

ΛST ] = det[
√

Λ][det[ST ]

= det[
√

Λ]

due to the determinant of an orthogonal matrix being 1. This again implies:

det[
√

ΛST ] =
√
det[Λ]

Further,

det[Fisher(θ)] = det[L′′(~θ)]
= det[SΛST ]

= det[Λ]

=⇒ det[
√

ΛST ] =

√
det[Fisher(~θ)]

Consequently, the original prior h(~θ) is transformed into some g(~φ) with,

g(~φ)Uθ = h(~θ)Vθ

=⇒ g(~φ) = h(~θ)
Vθ
Uθ

=⇒ g(~φ) =
h(~θ)√

det[Fisher(~θ)]
(3.12)

When the total message length is converted to this new parameterisation, we get:

I(θ,D) = − log2 [g(φ)Uθ] + L(~φ) +
1

2Uθ

∫
Uθ

yTy du

where E(yTy) =
1

Uθ

∫
Uθ

yTy du is the expected value of yTy.

From Conway and Sloane (1984), E(yTy) is given by dκdU
2/d where d is the number of

free dimensions and κd is the Conway constant (for optimal quantising lattice packing) for d
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dimensions. Known constants are κ1 = 1
12

;κ2 = 5
36
√

3
κ3 = 19

192(2
1
3 )

. Wallace (2005) provides a

lower and upper bound for computing the lattice constant for higher dimensions (in this thesis,
the upper bound is used for d > 3):

{(d/2)!}2/d

(d+ 2)π
< κd <

{(d/2)!}2/d(2/d)!

πd
(3.13)

As d increases, both lower and upper bounds approach the same value (See Table 3.2).

The optimal Uθ is given by κ
− d

2
d upon solving ∂

∂Uθ
I(θ,D) = 0. Substituting this optimal

value gives:

I(θ,D) = − log2 [g(~φ)] +
d

2
log2 (κd) + L(~φ) +

d

2

Converting back g(~φ) to the original prior h(~θ) using Equation 3.12 results in:

I(~θ,D) =
d

2
log2 (κd)− log2 [h(~θ)] +

1

2
log2 [det[Fisher(~θ)]]︸ ︷︷ ︸

First part: I(θ)

+ L(~θ) +
d

2︸ ︷︷ ︸
Second part: I(D|θ)

(3.14)

Here,
κ
− d2
d√

det[Fisher(~θ)]
is the volume of the region of uncertainty for ~θ. d

2
in the second part

accounts for the expected correction of rounding off ~θ to a point estimate ~̂θ.

The MML estimate ~̂θMML is the ~θ that minimises I(~θ,D).

~̂θMML = argmin
∀~θ ∈ Ω~θ

I(~θ,D)

This method requires a sufficient amount of data for successful parameter estimation, necessarily
a significant number of data points more than the number of free parameters to be estimated.
Otherwise, the first part may result in a negative length, due to the approximation of Pr(~θ).

The assertion of Pr(~θ)= h(~θ) × Vθ does not hold in such case, leading to a case of Pr(~θ) >

Table 3.2: Lower and upper bounds of quantising lattice constant (Conway and Sloane, 1984)
for various numbers of free dimensions

Lower bound Upper bound
d κd log2(κd) κd log2(κd)
1 0.0833333 -3.58496 0.5 -1
2 0.0795775 -3.6515 0.159155 -2.6515
3 0.0769669 -3.69962 0.115803 -3.11026
10 0.0691043 -3.85508 0.0761393 -3.71521
19 0.0657551 -3.92675 0.0689884 -3.8575
20 0.0655245 -3.93182 0.0685705 -3.86627
24 0.0647498 -3.94898 0.0672195 -3.89498
25 0.0645858 -3.95264 0.0669434 -3.90091
50 0.0622978 -4.00468 0.0633927 -3.97954
100 0.0608011 -4.03976 0.0613253 -4.02737



3.3. MINIMUM MESSAGE LENGTH PARADIGM FOR MODEL SELECTION 39

1. Therefore, to handle this, Wallace (2005) suggested the following approximation, which

continues to remain invariant under the nonlinear transformations of ~θ:

I(~θ) ≈ 1

2
log2

(
1 +

det[Fisher(~θ)]κdd

[h(~θ)]2

)
(3.15)

3.3.3 MML estimation of Parameters for a Multi-state Distribution

Here, we go through the MML estimation procedure applied to the multi-state probability
distribution. Multi-state models are heavily used in this thesis for modelling protein sequences
and their alignments.

A multi-state probability distribution describes a string generated over a fixed alphabet Ω =
{s1 , . . . , s|Ω|} with k = |Ω| symbols. A k-dimensional probability vector ~θ = {Pr(s1), . . . ,Pr(s|Ω|)}
parameterises the model, with a probability value for each state. This vector is L1-normalised
(i.e.

∑k
i=1 Pr(si) = 1). The standard unit k− 1 simplex is the set of all possible k-dimensional

L1-normalised vectors (Allison, 2018). Thus, ~θ is a point in a k − 1 unit simplex with k − 1

free parameters. This has a hypervolume of
√
k

(k−1)!
. Figure 3.4 shows a unit 1-simplex and unit

2-simplex.

The goal here is to estimate the total message length I(~θ,D) given by Equation 3.14 specific

to the multi-state model, and infer ~θ that minimises it, using the method of MML87.

Let ~θ = [θ1, θ2, ...θk] define the probability vector where θk is the probability of kth state.
The model has (k − 1) degrees of freedom (free parameters), as the following holds for any θk:

θk = 1−
k−1∑
i=1

θi (3.16)

Suppose data D at hand as a sequence of states over Ω, and the corresponding frequency
(observed count) vector for each state as: {x1, x2, ...xk}. If the total number of observations

(a) (b)

Figure 3.4: (a) unit 1-simplex visualisation (describing any 2-dimensional probability vector
represented by a point in 1-dimensional line from (0,1) to (1,0)), and (b) unit 2-simplex visu-
alisation (describing any 3-dimensional probability vector represented by a point in the light
blue highlighted surface defined by (0,1,0), (0,0,1) and (1,0,0) )
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(data) is N , then:
k∑
i=1

xi = N (3.17)

Assuming independent and identically distributed data points in D, the negative log likelihood
L(~θ) can be computed using the likelihood f(~θ|D) as follows:

L(~θ) = − log2 [f(~θ|D)] (3.18)

= − log2

(
k∏
i=1

θxii

)
(3.19)

= −
k∑
i=1

log2 (θx
i

i ) = −
k∑
i=1

xi log2 (θi) (3.20)

The determinant of the Fisher matrix det[F (θ)] is obtained through computing the observed

second order partial derivatives of ~θ at first. The first order partial derivatives are given by:

∂

∂θi
[L(~θ)] =

∂

∂θi
[−

k∑
i=1

xi log2 (θi)]

=

(
−xi
θi

+
xk
θk

)
Accordingly, we can compute the second order partial derivatives:

∂2

∂θ2
i

[L(~θ)] =

(
xi
θ2
i

+
xk
θ2
k

)
∂2

∂θi∂θj
[L(~θ)] =

xk
θ2
k

Since we deal with expected values to avoid infinite regress, the expected Fisher is derived using
E( ∂2

∂θ2
i
[L(~θ)]) and E( ∂2

∂θi∂θj
[L(~θ)]), by plugging in the expected counts for xi and xk:

E(
∂2

∂θ2
i

[L(~θ)]) =
Nθi
θ2
i

+
Nθk
θ2
k

=

(
N

θi
+
N

θk

)
E(

∂2

∂θi∂θj
[L(~θ)]) =

Nθk
θ2
k

=
N

θk
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The determinant of the expected Fisher matrix Fisher(θ) is:

det[Fisher(~θ)] =

∥∥∥∥∥∥∥∥∥∥∥∥

∂2L
∂θ2

1

∂2L
∂θ1∂θ2

∂2L
∂θ1∂θ3

.. ..
∂2L

∂θ2∂θ1
∂2L
∂θ2

2

∂2L
∂θ2∂θ3

.. ..

... ...

... ...

... ∂2L
∂θ2
k−1

∥∥∥∥∥∥∥∥∥∥∥∥
=

(
Nk−1∏k
i=1 θi

)
(3.21)

(Note: this is a (k − 1)× (k − 1) square symmetric matrix)

Defining a prior The simplest prior is to use a distribution h(~θ) that is uniform. Since ~θ
represents a point in the unit (k − 1)-simplex, a uniform probability of 1

volume(simplex)
can be

applied with the previously mentioned volume formula:

h(~θ) =
(k − 1)!√

k
(3.22)

A more flexible prior can be incorporated to support ~θ estimation with previous knowledge.
Dirichlet probability distribution is the conjugate prior for multi-state distribution. It is a family
of continuous probability distributions that models the uncertainty of a k-dimensional point in
a unit k−1 simplex. Given a Dirichlet model Dir(~α) with a parameter vector [α1,α2,...αk] (for
αi>0) that describes a data sample ~x. its PDF f(~x |~α) is defined as:

f(~x |~α) =
1

B(~α)

k∏
i=1

xαi−1
i (3.23)

where, B(~α) is the multivariate form of the Beta function.

Minimisation of I(~θ,D) For obtaining the optimal θi using a uniform prior h(~θ), the pre-
viously derived statistics from Equation 3.18 and Equation 3.21 are substituted to the total
message length I(~θ,D) given in Equation 3.14. Solving ∂

∂θi
[I(~θ,D)] = 0 gives the optimal θi

estimate as follow.

∂

∂θi

(
d

2
log2 (κd)− log2 [h(~θ)] +

1

2
log2 [det[Fisher(θ)]] + L(~θ) +

d

2

)
= 0

=⇒ 1

2

∂

∂θi
log2 [det[Fisher(~θ)]] +

∂

∂θi
L(~θ) = 0

=⇒ 1

2

∂

∂θi
log2

(
Nk−1∏k
i=1 θi

)
− ∂

∂θi

k∑
i=1

xi log2 (θi) = 0

This can be further expanded as:

−1

2

∂

∂θi

(
k−1∑
i=1

log2 (θi) + log2 (1−
k−1∑
i=1

θi)

)
− ∂

∂θi

(
k−1∑
i=1

xi log2 (θi) + xk log2 (1−
k−1∑
i=1

θi)

)
= 0
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resulting in:

−1

2

(
1

θi
− 1

θk

)
− xi
θi

+
xk
θk

= 0

=⇒ −xi + 0.5

θi
+
xk + 0.5

θk
= 0

=⇒ θi =
θk(xi + 0.5)

(xk + 0.5)

To remove θk from the estimator, substitute
∑k

i=1 θi = 1, which gives:

k∑
i=1

(
θk(xi + 0.5)

(xk + 0.5)

)
= 1 =⇒

(
θk

xk + 0.5

)
=

(
1

N + (k
2
)

)

From above, the MML estimate for θi under a uniform prior can be derived as:

θi =

(
xi + 0.5

N + k
2

)
(Note: that θ̂i > 0 even when xi = 0) (3.24)

Separately, a Dirichlet prior Dir(~α) can be applied as h(~θ). The term log2 (h(~θ)) in Equation
3.11 then becomes:

log2 [h(~θ)] = log2

(
1

B(~α)

)
+

k∑
i=1

(αi − 1) log2 (θi)

= log2

(
1

B(~α)

)
+

k−1∑
i=1

(αi − 1) log2 (θi) + (αk − 1) log2 (1−
k−1∑
i=1

θi)

Taking the derivative of log2 [h(~θ)], we have:

d

dθi
log2 [h(~θ)] =

(αi − 1)

θi
− (αk − 1)

θk

Consequently, optimisation routine continues with:

∂I(~θ,D)

∂~θ
= −(αi − 1)

θi
+

(αk − 1)

θk
− xi + 0.5

θi
+
xk + 0.5

θk
= 0

resulting in:

θi = θk

(
xi + αi − 0.5

xk + αk − 0.5

)
To remove θk from the estimator, apply

∑k
i=1 θi = 1, which gives:

k∑
i=1

θk

(
xi + αi − 0.5

xk + αk − 0.5

)
= 1 =⇒

(
θk

xk + αk − 0.5

)
=

(
1

N +
∑i=1

k αi − k
2

)
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Finally, the MML estimate for θi under a Dirichlet prior can be written in the following closed
form:

θi =

(
xi + αi − 0.5

N +
∑k

i=1 αi −
k
2

)
(3.25)

In summary, the concepts described in this chapter provide the necessary mathematical foun-
dation for the sequence alignment framework proposed in this thesis. The ensuing chapters
present the research core to this thesis. They discuss, amongst others, the formulation and de-
velopment of MML based statistical models and framework for protein sequence alignment, and
an estimation of a full set of statistical models for amino acid substitutions and gaps supporting
this framework.

BC



44 CHAPTER 3. STATISTICAL INFERENCE WITH INFORMATION THEORY



Chapter 4

Modelling Protein Alignments

“I have no data yet. It is a capital mistake to theorise before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.”

– Arthur Conan Doyle
(in The Adventures of Sherlock Holmes: A Scandal in Bohemia)

The main research contributions of this thesis begin with this chapter. This chapter estab-
lishes the basic components of the statistical framework for pairwise sequence alignment based
on the Minimum Message Length (MML) criterion. It develops three models in this framework:
null model, optimal alignment model and marginal probability model. In this context, each of
these models are regarded as a distinct, lossless compression scheme to encode a pair of protein
sequences in a single message. The fundamental idea is to select the best model which attains
the minimum message length overall. The message length reflects the corresponding Shannon
information content (the theoretically optimal lower bound).

This chapter is based primarily on the following publication:
Sumanaweera, D., Allison, L. and Konagurthu, A., The bits between proteins, in 2018 Data
Compression Conference (pp. 177-186), IEEE.
DOI: 10.1109/DCC.2018.00026
This chapter also includes parts of the material published in:
Sumanaweera, D., Allison, L. and Konagurthu, A.S., 2019. Statistical compression of protein
sequences and inference of marginal probability landscapes over competing alignments using
finite state models and Dirichlet priors. Bioinformatics, 35(14), pp.i360-i369.
DOI: 10.1093/bioinformatics/btz368

4.1 MML Framework for Optimal Sequence Alignment

Here we discuss the mathematical details of constructing an MML framework for the problem
of pairwise protein sequence alignment.

Overview of the framework for alignment selection: Earlier we saw the general two-
part message length formulation of MML to estimate the joint message length of stating an

45

https://doi.org/10.1109/DCC.2018.00026
https://doi.org/10.1093/bioinformatics/btz368
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hypothesis H and data D (Equation 3.10). Here, the data are the pair of amino acid sequences
〈S,T〉. The hypothesis is the statement of any alignment relationship A between them. This
results in the following two-part message length formulation:

I(A,〈S,T〉) = I(A)︸ ︷︷ ︸
First part

+ I(〈S,T〉 | A)︸ ︷︷ ︸
Second part

bits (4.1)

The first part accounts for communicating losslessly the alignment hypothesis A describing the
sequence relationship, while the second part refers to communicating all amino acid symbols of
S and T based on the stated relationship in the first part. As introduced in §2.3, a pairwise
alignment relationship defines a three-state string over match (m), insert (i), and delete (d)
states, generated by a finite state machine defined over those states (see Figure 4.1).

The message length term I(A, 〈S,T〉) is associated with the joint probability of A and
〈S,T〉, and allows the comparison of competing alignment hypotheses. Formally, the difference
of alignment model message lengths between any two alignments, A1 and A2, gives the log-odds
of their posterior probabilities:

I(A1, 〈S,T〉)− I(A2, 〈S,T〉) = log2

(
Pr(A2) Pr(〈S,T〉 |A2)

Pr(A1) Pr(〈S,T〉 |A1)

)
= log2

(
Pr(〈S,T〉) Pr(A2| 〈S,T〉)
Pr(〈S,T〉) Pr(A1| 〈S,T〉)

)
= log2

(
Pr(A2| 〈S,T〉)
Pr(A1| 〈S,T〉)

)
︸ ︷︷ ︸

log-odds posterior ratio

It follows from above that the best alignment hypothesis under this information-theoretic frame-
work is the one with the shortest value for I(A, 〈S,T〉):

A∗ = argmin
∀A ∈ A

{I(A,〈S,T〉)} (4.2)

Also, as discussed in the previous chapter (§3.3), MML provides a natural test of statistical
significance for any hypothesis using a null model. Here the null model length INULL(〈S,T〉)
gives the length of a lossless encoding that states each sequence S and T independently:

INULL(〈S,T〉) = INULL(S) + INULL(T) bits (4.3)

The full details of estimating a null model for any given sequence of amino acids are described
in §4.4. Defining the null model yields the following test of statistical significance:

∆IOptimal = INULL(〈S,T〉)− I(A∗,〈S,T〉) bits (4.4)

If ∆IOptimal > 0, we accept the optimal alignment model as significant (and 2∆IOptimal times
more probable than the null (unrelated) statement). Otherwise it is rejected.

4.1.1 Details of Estimating I(A, 〈S,T〉)

This section describes the estimation of the individual terms in Equation 4.1.
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Figure 4.1: A symmetric three-state machine models alignment three-state strings. State tran-
sitions associated with three free parameters are highlighted in red. Blue lines on edges show
equivalences between various state transition probabilities when insert and delete states are
treated symmetrically.

Computation of I(A)

This term deals with the estimation of the lossless encoding length of any alignment hypothesis
A. Throughout this thesis, A denotes a three-state alignment string.

The lossless encoding of any alignment A is composed of the following pieces of information:
(1) the length of the 3-state string, (2) the (free) parameters of the 3-state machine over which
the alignment is being encoded, and (3) the encoding of each state in A given those parameters.
The total encoding length of these pieces of information is denoted as:

I(A) = I(|A|) + I(~Θ) + I(A|~Θ, |A|) bits (4.5)

The length of the three-state alignment string |A| is sent using the relevant Wallace tree integer
code (Wallace and Patrick, 1993) described in §3.2.5.

As shown in Figure 4.1, this three-state machine has in total nine state transition probability
parameters (i.e. three transitions for each state): Pr(m|m), Pr(i|m), Pr(d|m), Pr(m|i), Pr(i|i),
Pr(d|i), Pr(m|d), Pr(i|d), and Pr(d|d).1,2 Note that the outgoing transition probabilities of each
state add up to 1. Further, this 3-state alignment machine is made to be symmetric in terms
of i and d states. This symmetry ensures:

• Pr(i|m) = Pr(d|m) ≡ 1− Pr(m|m)

2
;

• Pr(d|i) = Pr(i|d) ≡ 1− Pr(i|i) + Pr(m|i);

• Pr(m|i) = Pr(m|d)); and

• Pr(i|i) = Pr(d|d).

Altogether, these equivalences reduce the number of free parameters to just three (notionally:
~Θ = {Pr(m|m), Pr(i|i), Pr(m|i)}), from which all the remaining six dependent parameters can
be inferred. Estimation of these three free parameters is done as follows. For the match state,
it involves a point-estimation in a 1-simplex: [Pr(m|m), 1 − Pr(m|m)]. For the insert state, it

1The first character of any string from this three-state machine is encoded with a probability of 1
3 .

2In many alignment schemes, a transition between i and d states is forbidden, implying a transition probabil-
ity of zero. This thesis deals with the inference of a complete finite state machine, which includes the transition
probabilities Pr(i|d) and Pr(d|i) without constraining them artificially.
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involves a point-estimation in a 2-simplex: [Pr(i|i), Pr(m|i), 1 − Pr(i|i) − Pr(m|i)]. There

are two approaches to estimate the free-parameter vector ~Θ of the alignment 3-state machine,
which is then used to encode any alignment string and estimate I(A):

Approach 1: Use the MML87 method of parameter estimation for ~Θ based on the evidence of
the three states in A. Note, this approach can use either uniform priors (as per Equation
3.24) or any given Dirichlet priors (as per Equation 3.25).

Approach 2: Use the MML87 method of parameter estimation for inferring divergence ‘time’
dependent Dirichlet distributions from any given alignment benchmark. Subsequently,
apply the expected values under the inferred Dirichlet models to parameterise ~Θ.

This Chapter deals with Approach 1, applied using a uniform prior. Approach 2 is explored
in detail in Chapter 5, where the MML based Dirichlet model estimation is discussed.

Finally, if the alignment A = {〈state〉1 〈state〉2 〈state〉3 · · · 〈state〉|A|}, where any 〈state〉i ∈
{m, i, d}, then:

I(A|~Θ) = − log2

(
1

3

)
+

|A|∑
i=2

− log2(Pr(〈state〉i | 〈state〉i−1)) bits

Computation of I(〈S,T〉 |A):

This involves the message-length term required to explain all amino acids in the sequence pair
〈S,T〉, using the knowledge of their alignment relationship A. Solely based on the information
of A, the length of S (the number of ‘m’s plus the number of ‘d’s in A) and the length of T (the
number of ‘m’s plus the number of ‘i’s in A) are known. The details of the amino acid symbols
that make up these sequences should be accounted for. To achieve this, we estimate the length
of encoding the amino acid symbols associated with each alignment state.

Specifically, the m state implies an alignment between pairs of amino acids of the form Si
and Tj. The d state implies that Si remains unaligned, whereas the i state implies that Tj

remains unaligned.

Encoding amino acids under insert or delete state

The statement of amino acids in i or d state is carried out using the amino acid probabil-
ities coming under the null model, taking INULL(Si) and INULL(Tj) bits, respectively. (The
details of inferring the null model are given in §4.4).

Encoding amino acid pairs under match states

For the m state, each pair of amino acids 〈Si,Tj〉 are encoded using a probabilistic model
of amino acid substitution.

This chapter relies on an existing probabilistic model of amino acid substitution, which is the
PAM Markov model of substitution by Dayhoff et al. (1978). (Later in Chapter 6, new Markov
models are inferred under the MML framework for the same purpose). Dayhoff and colleagues
modelled the transition probabilities of each amino acid by relying on families of closely-related
proteins. Their approach derived an evolutionary time unit called Point Accepted Mutation
with a matrix called PAM-1. This matrix (denoted by M1) is a conditional probability matrix
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over all 20 amino acid symbols, where any M1(i, j) gives Pr(aai|aaj): the transition probability
of the amino acid aaj mutating into the amino acid aai, in one PAM-step. This is same as the
probability that amino acid aaj mutates into an amino acid aai between sequences that have
diverged by one PAM unit of time. (Note, M1(i, j) ≡ Pr(aai|aaj) 6= Pr(aaj|aai) ≡M1(j, i).)

Generalising, a PAM-t matrix (Mt ∀t > 0) gives the probability of any amino acid aaj
mutating into any amino acid aai in t PAM units of time. PAM-t can be derived from PAM-1
(M1) via matrix exponentiation: (M1)

t
= Mt. Further details on the mathematical properties

of this model are discussed comprehensively in Chapter 6. Note: The framework facilitates any
Markov model of amino acid substitution (such as PAM) to be applied as Mt.

Given an alignment A of a sequence pair 〈S,T〉, let Am denote the subsequence of A that
defines all its matches. Denote the ordered set of matches between amino acid pairs contained
in the subsequence Am to be of the form: 〈S,T〉m = (〈Si1 ,Tj1〉 , 〈Si2 ,Tj2〉 , . . .). There are two
approaches to encode these amino acid pairs using a given PAM-t (Mt) substitution matrix:

(i) Amino acid mutation-generation (asymmetric) machine:

Here, each matched pair of symbols 〈Sik ,Tjk〉 ∈ 〈S,T〉m is stated as follows. First, Tjk is
stated using the null model probability of Pr(Tjk), taking: INULL(Tjk) = − log2(Pr(Tjk))
bits. Then, Sik is stated using Tjk and PAM-t, taking I(Sik |Tjk ,M

t) =− log2(Pr(Sik |Tjk ,M
t))

= − log2(Mt(Sik ,Tjk)) bits. Thus, over the set of all matches defined by Am, the message
length term I(〈S,T〉 |Am) under this machine is:

I(〈S,T〉 |Am) =

|Am|∑
k=1

− log2(Pr(Sik ,Tjk |Mt))

=

|Am|∑
k=1

(
INULL(Tjk) + I(Sik |Tjk ,M

t)
)

bits. (4.6)

This approach is asymmetric in general. That means, swapping the order of sequences
from 〈S,T〉 to 〈T,S〉 changes the message length, unless the stationary distribution of the
Markov substitution matrix is used as the null probability distribution of amino acids.
(Such symmetry is possible due to the properties of Markov Models discussed in §6.2).

(ii) Amino acid pair-generation (symmetric) machine:

The above mentioned asymmetry encountered in the mutation-generation machine can be
overcome by constructing the average of the (asymmetric) joint probabilities of Pr(Sik ,Tjk |Mt)
and Pr(Tjk ,Sik |Mt) as:

avg

Pr(Sik ,Tjk |Mt) =
(Pr(Sik) Pr(Tjk |Sik ,Mt) + Pr(Tjk) Pr(Sik |Tjk ,M

t))

2

which remains invariant to the order of evaluation of the two sequences. Thus:

I(〈S,T〉 |Am) =

|Am|∑
k=1

− log2(
avg

Pr(Sik ,Tjk |Mt)) =

|Am|∑
k=1

I(Sik ,Tjk |Mt) bits. (4.7)
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Estimating the optimal evolutionary time for a given alignment:

Given an alignment A over a sequence pair 〈S,T〉, we want to select the best evolutionary time
t under the PAM model (i.e. Mt = PAM-t) such that, the term I(A, 〈S,T〉) computed using
either Equation 4.6 or Equation 4.7 is minimised. Equation 4.9 gives the complete breakdown
of the term. Here, we restrict t to be a positive integer, and attempt to minimise I(A, 〈S,T〉)
using a variant of the iterative bisection search over the domain L = 1 ≤ t ≤ 1000 = U .
This procedure is further elaborated in §4.1.2 below, under the ‘Expectation-Maximisation like
approach’.

Finally, the statement length of the second part of the message becomes:

I(〈S,T〉|A) =
∑

∀〈Si,Tj〉∈Am

I(Si,Tj|Mt) +
∑
∀Si∈Ad

I(Si) +
∑
∀Tj∈Ai

I(Tj) bits (4.8)

4.1.2 Search for the Optimal Alignment

The aforementioned encoding scheme of the alignment model is applicable to any given align-
ment A. However, we are interested in finding the optimal alignment A∗ that minimises the two
part message length I(A∗, 〈S,T〉), expressed via Equation 4.2. This involves a simultaneous

finding of the optimal values for its associated parameters {~Θopt, topt}. The goal is the optimal

inference of {A, ~Θ, t}, through an Expectation-Maximisation (EM) like iterative procedure. At

each iteration step of EM, the best alignment is found for some fixed set of {~Θ, t} using a Dy-
namic Programming (DP) approach. Then the best parameters are inferred for that particular
alignment. These will be the fixed parameters for the next iteration. The search procedure
continues until convergence.

Dynamic Programming Algorithm

Given a fixed parameter set {~Θ, t}, the objective is to find the optimal alignment that minimises

I(A,〈S,T〉) = I(|A|) + I(t) + I(~Θ) + I(A|~Θ) + I(〈S,T〉|A) (4.9)

using Dynamic Programming (DP). To permit strict-additivity that is required to implement
DP, I(|A|) is considered as a constant for all practical purposes. This is justified because:

(i) closely-competing alignments around the optimal almost always have the same alignment
lengths, and hence yield the same value for I(|A|); and

(ii) furthermore, I(A|~Θ) + I(〈S,T〉|A)� I(|A|)

The framework adopts a DP strategy similar to the one proposed by Gotoh (1982) as described
in §2.4.2. Three history matrices, Histm, Histi and Histd of size |S| + 1 × |T| + 1 are built
for each state ∈ {m,i,d}. Any Histm(i, j) accounts for the alignment of S1:i and T1:j prefixes
that ends in an m state. Similarly, Histi(i, j) and Histd(i, j) denote the message lengths of
communicating alignments of those prefixes that end in state i and state d, respectively. The
recurrence relations are defined below.
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Histm(i, j) = min


Histm(i− 1, j − 1) + I~Θ(m|m) + I(Si,Tj|Mt)

Histi(i− 1, j − 1) + I~Θ(m|i) + I(Si,Tj|Mt)

Histd(i− 1, j − 1) + I~Θ(m|d) + I(Si,Tj|Mt)

Histi(i, j) = min


Histm(i− 1, j) + I~Θ(i|m) + I(Si)

Histi(i− 1, j) + I~Θ(i|i) + I(Si)

Histd(i− 1, j) + I~Θ(i|d) + I(Si)

Histd(i, j) = min


Histm(i, j − 1) + I~Θ(d|m) + I(Tj)

Histi(i, j − 1) + I~Θ(d|i) + I(Tj)

Histd(i, j − 1) + I~Θ(d|d) + I(Tj)

Finally, the optimal message length is computed as:

I(A∗,〈S,T〉) = I(|A∗|) + I(topt) + I(~Θopt)+ min{Histm(|S|,|T|),Histi(|S|,|T|),Histd(|S|,|T|)}
bits

The optimal alignment A∗ can be constructed by tracing back across the history matrices,
starting from the cell (|S|, |T|) of the Hist matrix that gives the minimum message length. In
case of ties, the order m,i and d is followed.

Note: In this thesis, an insertion denotes alignment columns where gaps occur in T as
opposed to amino acids (inserted) in S. A deletion is the other way around.

Expectation-Maximisation like approach for Optimal {~Θ, t}

The EM-like process starts with an initial set of parameters {~Θ, t}. The Expectation step (E-
step) involves running the DP algorithm described in §4.1.2, leading to an initial alignment

A. Next, the maximisation step (M-step) performs a separate maximisation for ~Θ and t inde-
pendently, by keeping the currently obtained A fixed. Upon the M-step, the parameters are
updated, and the EM process is repeated until the alignment does not change anymore (i.e.
convergence). Parameters are updated as follow.

(1) Updating the optimal time t: Given the mapping between evolutionary time and sub-
stitution probability matrices defined in the codebook, the search for the optimal evolutionary
time t goes as follows. The framework in this chapter searches for the best t ∈ [1, tmax] that min-
imises the message length associated with the likelihood of all matches

∑
∀〈Si,Tj〉∈Am

I(Si,Tj |Mt),

under the currently fixed A using a substitution matrix Mt (as briefly introduced in §4.1.1).
An exhaustive grid search is inefficient for this search, as it takes O(tmax|A|) time to find the
minimum. A logarithmic time-complexity search algorithm such as bisection search or a gra-
dient descent method can be used for the purpose. This thesis initially employed a variant
of the bisection search (i.e. a quaternary search) over the domain L = 1 ≤ t ≤ U = tmax,
where tmax=1000.3 For the fixed set of matches present in an alignment, in each iteration, the
algorithm truncates the search domain [L,U ] to [L+ U−L

4
, U ] or [L,U − U−L

4
] by removing the

first or the last quarter, based on the value evaluated for the associated message length. If the
message length at the lower bound is higher than the upper bound, the lower bound is updated.

3Choosing tmax was based on the observed time taken for a Markov substitution model to reach the stationary
distribution across a selected set of Markov matrices. This is reasoned in Chapter 6.



52 CHAPTER 4. MODELLING PROTEIN ALIGNMENTS

Otherwise, the upper bound is updated. The iterations stop when the search converges, and
the value of t is updated with the inferred time measure.

(2) Updating ~Θ: This is dependent on which approach we use for parameterising ~Θ (as
defined in 4.1.1). Under Approach 1, the three-state machine parameters are re-estimated
using the MML87 method over the observed alignment string. Under Approach 2, the up-
dated t automatically gives the new values for ~Θ (drawn from a mapping between evolutionary

time t and its suitable ~Θ estimates under the codebook). In the results presented here, we
use Approach 1. In the next chapter, with further extensions, the use of Approach 2 is
demonstrated.

Computational Complexity

The overall search for an optimal alignment under the methods described above takes O(|S||T|)
effort to compute. The total effort is a function of:

• the number of EM iterations: nEM

• the time taken to fill the three history matrices: O(|S||T|)

• the time taken to find the optimal time parameter t in each EM iteration: O(|A|) =
O(|S|+ |T|)

• the time taken to find the three-state machine parameters in each EM iteration, optimal
for the current alignment: O(|A|) = O(|S|+ |T|).

In practice, nEM is a small integer (in most cases ≤ 5). Note: In any iteration, the length of
an alignment (|A|) is bounded by |S| + |T|. Separately, the space requirement of maintaining
the three history matrices is O(|S||T|).

4.1.3 Performance of the Initial Alignment Model

The above detailed MML framework for optimal sequence alignment enabled an initial eval-
uation to test the effectiveness of its unsupervised protein alignment under both symmetric
and asymmetric machines (described in §4.1.1). A benchmark of 630 pairwise alignments were
downloaded from the manually-curated HOMologous STRucture Alignment Database (HOM-
STRAD) database (Mizuguchi et al., 1998) for this purpose. They were realigned using the
MML framework, applying PAM (Dayhoff et al., 1978) Markov model as the amino acid sub-
stitution model M. Let us denote the PAM series by PAM = {M1,M2, ...,MtMax}, where a
conditional probability matrix is defined for each discrete evolutionary time t ∈ [1, tMax], taking
tMax = 1000. (Note: All computational aspects, justifications and further improvements related
to the substitution matrix series are detailed in Chapter 6).

The 630 pairs were also realigned using two popular alignment programs, ClustalW2 (Larkin,
2007) and MUSCLE (Edgar, 2004), in the pairwise alignment mode under their default param-
eter settings. Further, the general Gotoh alignment algorithm (Gotoh, 1982) with affine gap
penalty function Γ(l) = go + (l−1)ge was also included in this study. Since it works with a
fixed scoring matrix and gap penalties, the evaluation was done under the 〈go = 10,ge = 1〉
setting with {M10,M100,M250} matrices from the PAM series, as well three other non-Markov
substitution matrices, {BLOSUM-30, BLOSUM-62, BLOSUM-90} from another widely-used
matrix series BLOSUM (Henikoff and Henikoff, 1992).
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Table 4.1: The 1st (Q1), 2nd (Q2=median) and third (Q3) quartile statistics of compression
gain observed across the alignments generated by various methods for 630 pairs of proteins in
the HOMSTRAD benchmark

Compression (in bits)
Symmetric Asymmetric

Q1 Q2 Q3 Q1 Q2 Q3

ClustalW2 4.8 72.5 231.5 2.2 69.5 229.3

MUSCLE 5.8 77.5 232.2 4.9 75.1 230.3

Gotoh + BLOSUM-30 -10.5 66.6 221.6 -11.9 62.9 219.6

Gotoh + BLOSUM-62 1.8 74.7 232.2 -0.8 73.4 225.2

Gotoh + BLOSUM-90 -7.5 69.9 225.0 -9.8 66.5 222.9

Gotoh + PAM-10 -35.5 15.1 177.1 -35.3 14.5 175.9

Gotoh + PAM-100 -3.5 71.3 227.4 -5.5 70.3 224.2

Gotoh + PAM-250 3.7 75.5 228.1 2.2 72.9 227.6

MMLOptimal 12.6 82.7 233.6 11.5 82.4 233.1

Alignments generated by different programs were compared in terms of their compression
gain under the optimal alignment model (∆Optimal) defined in the Equation 4.4. To allow this,

optimal alignment model parameters {~Θ, t} were inferred for every alignment across other pro-
grams using the M-step described in §4.1.2. Separately, the null model probability distribution
of amino acids was estimated using the MML87 method over a set of complete protein sequences
from the UniProt (UniProt Consortium and others, 2017) database (See §4.4 for details on null
model inference). These enable the computation of: INULL(〈S,T〉)− I(A∗, 〈S,T〉).

Table 4.1 presents the quartile statistics of compression, under both symmetric and asym-
metric machines of amino acid pairs. This table shows that the alignments inferred using the
MML based optimal alignment model yields the most compression, consistently across all quar-
tile marks.

Note: This section presented only the preliminary results of the premature MML protein
optimal alignment model introduced in this chapter. Later chapters 5 and 6 evolve the
framework further with better models of alignment and amino acid evolution, and present
more comprehensive results on their evaluation over several benchmarks compared to several
popular alignment programs and existing substitution models.

4.2 MML Framework to Marginalise over All Possible

Alignments

As an alternative to the optimal alignment framework explored in the previous section, this
section explores the use of MML framework to compute the marginal probability (described by
Equation 3.3) in Shannon information terms, over all possible alignments between two protein
sequences.

Marginal (or total) probability estimation applied to sequence alignment provides a pow-
erful technique to highlight the relationship between sequences, by ‘marginalising out’ all the
alignments between them (Allison and Wallace, 1994; Eddy, 1998). This is useful when proteins
have far diverged beyond a point where the optimal alignment is unable to capture statistically-
significant similarities. Rost (1999) comments on the difference between accurate evolutionary
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relationship detection and alignment as follows: “Did this imply that correct detection and cor-
rect alignment were not correlated?... Not necessarily, but the fact is that two homologues can
be detected although part or even the entire alignment is wrong”

Here we define a marginal probability model under the MML framework which is more
general in evaluating the evolutionary relationship between S and T without specifying an
alignment. It is also used for effective visualisations of competing alignments (See §4.3.2). This
enables us to answer the question: Are two protein sequences evolutionarily related?. The total
law of probability (presented in §3.1 with marginal probability definition given by the Equation
3.3) allows us to integrate over the complete alignment space, in order to compute the marginal
probability model as follows:

IMarginal(〈S,T〉) = − log2

(∑
∀A∈A

Pr(A, 〈S,T〉)

)
bits (4.10)

This model can be explored in a similar fashion to the optimal alignment model, yielding the
following statistical significance test with respect to a null model :

∆IMarginal = INULL(〈S,T〉)− IMarginal(〈S,T〉) bits (4.11)

If ∆IMarginal > 0, we accept the marginal probability model as indicating some unspecified
relationship. Otherwise, it is rejected, concluding that there is no sequence signal that reveals
any evolutionary relationship between the pair.

More importantly, the estimate of IMarginal(〈S,T〉) can also be implemented using an effective
DP approach similar to the optimal alignment DP, via three history matrices: Totm, Toti and
Totd. Each cell (i, j) in these matrices stores the negative logarithm of the marginal probability
that the prefixes S1:i and T1:j are related, by summing over all alignments ending in m, i, and d

states respectively. This can be efficiently computed using the negative log sum of exponentials
(LSE) function under the dynamic programming recurrences given below:

Totm(i, j) = −LSE


Totm(i− 1, j − 1) + I~Θ(m|m) + I(Si,Tj|Mt)

Toti(i− 1, j − 1) + I~Θ(m|i) + I(Si,Tj|Mt)

Totd(i− 1, j − 1) + I~Θ(m|d) + I(Si,Tj|Mt)

Toti(i, j) = −LSE


Totm(i− 1, j) + I~Θ(i|m) + I(Si)

Toti(i− 1, j) + I~Θ(i|i) + I(Si)

Totd(i− 1, j) + I~Θ(i|d) + I(Si)

Totd(i, j) = −LSE


Totm(i, j − 1) + I~Θ(d|m) + I(Tj)

Toti(i, j − 1) + I~Θ(d|i) + I(Tj)

Totd(i, j − 1) + I~Θ(d|d) + I(Tj)

Note: The logarithm of the sum of exponentials (LSE) of a set of arguments a, b, c as:

LSE{a, b, c} = log2 (a+ b+ c)

= log2

(
a ·
(
a

a
+
b

a
+
c

a

))
= log2 (a) + log2

(
1 + 2log2 (b)−log2 (a) + 2log2 (c)−log2 (a)

)
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Ultimately, IMarginal(〈S,T〉) over all possible alignments (as per the Equation 4.10) is given by:

I(〈S,T〉) = −LSE{Totm(|S|, |T|),Toti(|S|, |T|),Totd(|S|, |T|)} bits

This computation has similarities to the computation done in the forward-backward algorithm
(Eddy, 1998). Finally, the same EM approach (presented in §4.1.2 for optimal alignment model)

can be used to optimise for {~Θ, t}.

Search for the Optimal {~Θ, t}

Again, the optimisation routine starts with an initial {~Θ, t}. E-step runs the DP algorithm
described above. M-step maximises the parameters under the fixed marginal probability model
and updates them for the next iteration. EM process continues until convergence.

However, the E-step does not lead to a definitive alignment between the sequences. Thus,
the search for the best t ∈ [1, tmax] is no longer on a fixed alignment, but across all alignments

by minimising the total message length I(〈S,T〉). Further, Approach 1 for ~Θ estimation is

feasible only if we sample an average alignment from the space and compute optimal ~Θ using
MML multi-state inference by fixing that alignment. For Approach 2, the ~Θ which is mapped
to the updated value of evolutionary time t in the codebook can be applied. (See §4.1.1 for the

introduction of Approach 1 and Approach 2 for estimating the free parameter vector ~Θ of the
three-state machine).

Computational Complexity

The marginal probability model requires an O(|S||T|) time and space complexity. Mainly, this
is because the derivation of the total probability of prefixes of sequences at each cell in the
three DP matrices requires only O(1) effort. All other considerations are same as discussed for
optimal alignments.

4.3 Alignment Landscapes

Alignment landscapes provide useful visualisations of competing alignments across the the en-
tire space of alignments between pairs of protein sequences. Since all alignments are evaluated
probabilistically in this MML framework, such landscape enables users to explore highly prob-
able alternative alignments in addition to the best under this framework. Adopting the same
line of thought in the work by Allison and Wallace (1994); Yee and Allison (1993) implemented
for DNA sequence alignment, this thesis defines two types of alignment landscapes for pro-
tein sequence alignment under the MML framework introduced in §4.1: (1) optimal alignment
landscape and (2) marginal probability landscape.

In a nutshell, an alignment landscape is represented by a single matrix L of size (|S|+ 1)×
(|T|+ 1). Each cell L(i, j) corresponds to a 〈S1:i,T1:j〉 prefix alignment and

〈
Sj+1:|S|,Ti+1:|T|

〉
suffix alignment. In other words, it is a joint prefix and suffix alignment, passing through a cell
(i, j). The landscape matrix L is constructed as follows:

1. Align S and T in the forward direction (i.e. align prefixes
〈
S1:|S|,T1:|T|

〉
), optimally or

marginally through the EM based iterative process described previously under the MML
framework

2. Align S and T in backward direction (i.e. align suffixes
〈
S|S|:1,T|T|:1

〉
) in single iteration,

under the optimal parameter setting inferred for forward alignment
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(a) (b)

Figure 4.2: Competing optimal alignment landscapes of (a) γ subunits of ATP Synthases from
Bos Taurus (PDB ID: 1E79, chain G) and Escherichia Coli (PDB ID: 1FS0, chain G); (b)
cephalosporin acylase from Brevundimonas diminuta (PDB ID: 1FM2 chain A) and penicillin
acylase from Escherichia coli (PDB ID: 1E3A chain A).

3. Consistently collate the three forward DP history matrices and the three backward DP
history matrices to form L

In backward alignment, proper reverse encoding is enforced by reversing the three-state
machine. Also this is straightforward only when using a Markov order-0 null model. The next
two sections present the specifics of the above procedure for the two distinct types of alignment
landscapes.

4.3.1 Optimal Alignment Landscape

A cell (i, j) in the optimal alignment landscape matrix LOpt gives the information content of
the best alignment passing through (i, j). This is computed as the combination of the optimal
alignment of the prefixes 〈S1:i,T1:j〉 and the suffixes

〈
Si+1:|S|,Tj+1:T

〉
).

Let the DP history matrices of forward alignment and backward alignment be: { Histm-fwd,
Histi-fwd, Histd-fwd} and { Histm-bwd, Histi-bwd,Histd-bwd}, respectively. When joining two equiv-
alent cells (call it (i, j)) in the histories of forward and backward DP computation, the set of all
possible state transitions (i.e. the Cartesian product of the vector {m, i, d} and itself) should
be taken into consideration when selecting the optimal alignment that passes through cell (i, j).
Let x → y denote a state transition ∀x, y ∈ {m,i,d}. Then, for i 6= |S| and j 6= |T|, the total
message length of optimal prefix and suffix alignment that passes through cell (i, j) is:

LOpt(i, j) = min
∀x,y ∈ {m,i,d}

{
Histx-fwd(i, j) + Histy-bwd(|S| − i,|T| − j) + I(y|x) + log2

(
1
3

) }
bits

Note: The 1
3

term is added to avoid the redundant length addition of the initial contexts in both
directions. The bottom-most right cell LOpt(|S|, |T|) is a special case of the above equation,
where the I(y|x) + log2

(
1
3

)
part can be excluded.

Upon filling all the cells in L, the optimal alignment path will emerge in the landscape
as the path of cells having the minimum message length. See Figure 4.2 for examples of
optimal alignment landscape visualisations. (Note: The color map ranges from dark blue (=
alignments with smaller total message lengths) to dark red (= alignments with higher total
message lengths)).
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(a) (b)

Figure 4.3: Competing marginal probability landscapes of (a) Mengo encephalomyocarditis virus
coat protein domain (SCOP ID:d2mev1 ) and poliovirus type 3, sabin strain protein domain
(SCOP ID:d1pvc1 ); (b) Mitochondrial Protein MSS51 of Saccharomyces cerevisiae (UniProt
ID: P32335) and mitochondrial Putative protein MSS51 homolog of Homo sapiens (UniProt
ID:Q4VC12).

4.3.2 Marginal Probability Landscape

A cell (i, j) in the marginal probability landscape matrix LMarginal gives the negative logarithm
of the total probability of all alignments passing through that cell. A consistent combination
of forward and backward DP history matrices computed under the marginal probability model
results in the construction of LMarginal.

Let the DP history matrices of forward alignment and backward alignment be: {Totm-fwd,
Toti-fwd, Totd-fwd} and { Totm-bwd, Toti-bwd, Totd-bwd}, respectively. Then, for i 6= |S| and
j 6= |T|, the total message length of all prefix and suffix alignments that passes through cell
(i, j) is:

LMarginal (i, j) = - LSE
∀x,y ∈ {m,i,d}

{
Totx-fwd(i, j) + Toty-bwd(|S| − i,|T| − j) + I(y|x) + log2

(
1
3

) }
bits

Again, LMarginal(|S|, |T|) is computed by excluding the I(y|x) + log2

(
1
3

)
part.

See Figure 4.3 for examples visualisations of marginal probability landscapes. More exam-
ples are illustrated in Figure 5.7 of the next chapter, where the marginal probability model is
evaluated over two benchmark datasets in §5.4.

With this section, the description of the key elements of MML optimal alignment model
and marginal probability model ends here. Next section moves into the details of inferring the
null model, which is essential to assess the statistical significance of the aforementioned models
via the compression statistic. It concludes the write-up about the core of the MML protein
sequence alignment framework contributed by this thesis.

4.4 The Null Model for Protein Sequences

Let us now lay the ground for estimating a null model of protein sequences. As described in
§3.3, a null model explains the observed data (in here, the amino acid sequences) as is, without
any support of an “interesting” hypothesis. The observed repertoire of proteins across varying
species (proteomes) provides the dataset to estimate such a model. The null model encoding
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length of any pair of sequences establishes a baseline to test the statistical significance of any
alignment hypothesis, as already explored in the previous section of this chapter.

The simplest model of protein sequences is the uniform model, where each amino acid has
a probability of 1

20
, taking − log2( 1

20
) = 4.321 bits to state. However, amino acid distribution is

non-uniform, so could be modelled using Markov models.Below section discusses the estimation
of any nth-order Markov model (n ≥ 0) over amino acids, using the MML87 estimator (described
in §3.3.3).

4.4.1 MML Estimation of an nth-order Markov Model for Amino
Acids

Define an amino acid sequence S = (S1S2..S|S|) over the amino acid alphabet ℵ (of size k).4

In an nth-order Markov model, any amino acid a = Si ∈ ℵ in the sequence is encoded using a
probability of θa that is conditional on the previous context (Si−nSi−n+1 · · ·Si−1) of size n.

θa = Pr(Si |(Si−nSi−n+1 · · ·Si−1))

This section specifically studies the estimates for n ∈ {0, 1, 2, 3}. Using the general MML87
estimate derived in Equation 3.3.3, the probability of each amino acid a conditioned on each
possible context (denoted by context) is given by:

Pr(a|context) =

 xa|context + 0.5∑
∀b∈ℵ

xb|context +
k

2


where xa|context is the number of observations of amino acid a with the specified context preceding
it. Thus, any sequence S can be encoded using an nth-order Markov model. The order n null
model encoding length of the sequence S, denoted by INULL(S) is given by:

INULL(S) = I(|S|) + log2 (kn) +

|S|∑
i=n

I(Si|(Si−nSi−n+1 · · ·Si−1)) (4.12)

Here, I(|S|) term refers to the part which conveys the length of S over an integer encoding
scheme. The second term accounts for the initial context S0:n−1 encoded over a uniform model
with 1

kn
probability for each context. The summation term refers to the encoding of all amino

acid symbols using the MML87 probability estimates inferred over some proteome dataset.

4.4.2 Estimation across Different Proteomes

This section examines the individual MML estimates for a null model distribution of amino
acids derived over proteomes from a diverse set of organisms, covering the three domains of life
( Eukaryota, Bacteria and Archea) and a few viruses (See Appendix A for their information).
They also account for both unbiased and biased genomes in terms of their DNA nucleotide
composition.

4There are are 20 naturally occurring amino acid residues. In addition, there are also five, unnatural amino
acid symbols: B - Asx (Asp/Asn); O - Pyrrolysine ; U - Selenocysteine; X - any residue; Z - Glx (Glu/Gln).
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Data curation: Prior to inference, the non-viral proteome sequences were filtered on four
different criteria: (1) unreviewed proteins (2) gene unknown proteins, (3) unreliable proteins
(predicted/uncertain), and (4) gene multiplicity. Unreliable proteins were identified based on
the evidence code. The longest sequence was taken to be the canonical protein for entries under
the same gene. An exception to filter (1) was made for P. ovale wallikeri as all its proteins
appear to be unreviewed. The basic information (including total protein counts and average
sequence lengths) before and after filtering are given in Table 4.2. For non-viral proteomes,
filtering was not applied due to insufficient numbers of reviewed proteins (Note: none of them
had unknown genes). See Table 4.3.

MML message formulation: Each proteome was evaluated in terms of I(~Θ, D), the total

message length of communicating the Markov model parameter vector ~Θ and all sequence data
D, according to Equation 3.14. Here, ~Θ = {~θ1, ~θ2, .. ~θkn}, where ~θi represents a point in a unit
(k − 1)-simplex for each possible context ci in the space C of all kn possible contexts. As a
result,

I(~Θ, D) =
∑
∀ci∈C

{
d

2
log2 (κd)− log2 [h(~θi)] +

1

2
log2 [det[Fisher(~θi)]] + L(~θi) +

d

2

}
(4.13)

=
knd

2
log2 (κd)− kn log2 [h(~θi)] +

1

2

∑
∀ci∈C

log2 [det[Fisher(~θi)]]︸ ︷︷ ︸
First part

+L(~Θ) +
knd

2︸ ︷︷ ︸
Second part

(4.14)

where d = k − 1 is the number of free parameters for each ~θi ∈ ~Θ, and h(~θi) is the uniform

prior computed using Equation 3.22. (Note: h(~θi) = d!√
d+1

= 24!√
25

for the k = 25 case which
takes all natural and unnatural amino acid symbols into account. This reflects the size of the

Table 4.2: Statistics of proteome data across thirteen species covering the three domains of life.
(* Filter 1 is ignored for P. ovale wallikery)

Filtering criteria After filtering

Species Total
protein
count

Average
sequence
length

Unreviewed
protein
count

Gene
un-

known
protein
count

Unreliable
protein
count

Protein
count
after

multiplicity
removal

Average
sequence
length

Total
residue
count

Eukaryota

H. Sapiens 70946 336.89 50761 146 621 19261 575.03 11,075,733
A. thaliana 39228 423.45 24032 0 602 14381 459.80 6,612,376
M. musculus 50936 428.74 34082 407 43 16348 573.77 9,379,927
D. melanogaster 21977 681.52 18544 0 8 3385 605.11 2,048,296
S. cerevisiae 6816 445.50 95 0 1086 5635 506.70 2,855,279
P. ovale wallikeri 8636 511.01 8636* 0 7993 643 546.36 351,310

Bacteria

E. coli 4306 314.96 0 0 622 3684 326.19 1,201,676
C. tetani 2356 336.55 2024 0 0 331 345.79 114,458
M. tuberculosis 3993 333.50 1823 0 100 2066 352.66 728,590
B. subtilis 4260 289.77 72 0 1048 3139 330.04 1,036,009
S. lactis 2225 295.26 1688 0 4 533 336.19 179,188
S. coelicolor 7731 329.65 6943 0 24 764 342.64 261,774

Archea

M. jannaschii 1787 282.68 0 0 719 1065 311.35 331592
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Table 4.3: Statistics of proteome data across five viruses (Note: no filtering is applied)

Species
Total

protein
count

Unreviewed
protein
count

Unreliable
protein count

Average
sequence

length

Total
residue
count

Paramecium bursaria Chlorella virus 1 (PBCV-1) 794 778 1 172.38 136,866
Bacillus virus G 675 675 0 214.76 144,966
Cafeteria roenbergensis virus (CroV) 544 544 0 340.01 184,963
Emiliania huxleyi virus (EhV-86) 472 472 0 260.60 123,003
HumanSARS coronavirus (Human SARS-CoV) 15 0 3 958.47 14,377

Table 4.4: I(~Θ, D) total message length breakdown for Markov models of varying order across
proteomes of different species and viruses

Markov order 0 Markov order 1 Markov order 2 Markov order 3

Species I(~Θ) I(D|~Θ) I(~Θ) I(D|~Θ) I(~Θ) I(D|~Θ) I(~Θ) I(D|~Θ)

H. Sapiens 259.44 46271904.64 3442.93 46103056.53 26911.74 45944536.46 N/A 45797725.06
A. thaliana 251.79 27625159.03 3113.66 27544321.69 20663.95 27482285.38 N/A 27473557.02
M. musculus 251.82 39174068.86 3567.23 39042369.15 26711.70 38951728.55 N/A 38955147.99
D. melanogaster 223.57 8578605.71 2798.67 8536662.45 12047.94 8502019.12 N/A 8629791.19
S. cerevisiae 234.55 11881613.69 2758.86 11850707.41 13413.67 11824212.00 N/A 11891299.77
P. ovale wallikeri 188.38 1455234.29 2000.92 1448584.97 N/A 1451012.63 N/A 1639014.26

E. coli 214.17 4991227.15 2535.25 4973712.71 6505.64 4971551.29 N/A 5134408.20
C. tetani 168.36 467916.57 1401.89 466706.24 N/A 471847.09 N/A 693901.80
M. tuberculosis 207.24 2938021.08 2177.83 2926968.53 1083.20 2925737.91 N/A 3104539.16
B. subtilis 212.84 4296343.93 2391.21 4280574.68 4844.87 4279332.16 N/A 4449041.68
S. lactis 177.63 737782.00 1592.54 735666.49 N/A 740244.71 N/A 951853.89
S. coelicolor 186.02 1053660.10 1747.83 1050625.79 N/A 1054643.80 N/A 1261964.11

M. jannaschii 186.66 1349603.93 2029.27 1343945.63 N/A 1344662.99 N/A 1539994.39

PBCV-1 170.56 574242.32 1493.77 572009.51 N/A 574939.35 N/A 778333.07
Bacillus virus G 172.66 598528.95 1509.66 597093.95 N/A 601864.91 N/A 815506.00
CroV 178.23 752675.55 1607.04 748481.31 N/A 747915.19 N/A 952911.79
EhV-86 168.20 517535.97 1451.99 513214.96 N/A 515656.94 N/A 723015.44
Human SARS-CoV 123.36 60312.63 560.02 60290.94 N/A 64900.47 N/A 312877.08

enormous parameter space for an L1-normalised vector with 24 free dimensions). The total

message length I(~Θ, D) breakdown of I(~Θ) and I(D|~Θ) for each proteome is given in Table
4.4. (Note: all results presented in this section refer to the case of k = 25 which includes all
natural (20) amino acids and unnatural (5) amino acids. However, this thesis only deals with
20-state amino acid distributions and thus, any inferred null model distribution under k = 25
is always normalised to derive estimates just for the 20 natural residues.)

In addition, those proteomes were also encoded under the adaptive coding scheme described
in §3.2.4. Since it dynamically updates probability models simultaneously at sender and receiver
sides, there is no cost associated with sending the model parameters (compared to the first part
in Equation 4.13). Thus we expect |adaptive(message)| < |mml(message)|. However, we
can observe no great difference between the two schemes in terms of their entropy (bits per
residue) values. Table 4.5 presents entropies for each proteome under both the adaptive code
and MML code.

Discussion: As n increases, the number of free parameters exponentially increases (i.e. 24,
600 , 15,000 and 375,000 parameters to be estimated for n = 0, 1, 2, 3 cases, respectively). This
results in the need for a number of data points that is much higher in several magnitudes of
order. Otherwise the MML87 approximation does not work well as explained in §3.3.2. N/A
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Table 4.5: Entropy (bits per residue) of adaptive codes and MML codes for Markov models of
varying order inferred across proteomes of different species and viruses

Species Adaptive code MML code
n=0 n=1 n=2 n=3 n=0 n=1 n=2 n=3

H. Sapiens 4.17779667 4.16287212 4.15252484 4.16970820 4.17779700 4.16283956 4.15064612 N/A
A. thaliana 4.17783370 4.16611206 4.16273941 4.20085520 4.17783423 4.16604188 4.15931419 N/A
M. musculus 4.17639891 4.16273344 4.15761519 4.19118068 4.17639931 4.16271218 4.15551637 N/A
D. melanogaster 4.18827434 4.16920025 4.16717989 4.27552141 4.18827615 4.16905619 4.15665854 N/A
S. cerevisiae 4.16136032 4.15158392 4.15381432 4.22470692 4.16136155 4.15142137 4.14587355 N/A
P. ovale wallikeri 4.14283417 4.13012640 4.18402795 4.41554733 4.14284443 4.12907655 N/A N/A

E. coli 4.15373001 4.14136619 4.16128497 4.31525857 4.15373305 4.14108958 4.14259495 N/A
C. tetani 4.08954750 4.09385450 4.20956282 4.498144193 4.08957810 4.08978079 N/A N/A
M. tuberculosis 4.03275480 4.02093181 4.04845672 4.22445199 4.03275961 4.02029448 4.01710305 N/A
B. subtilis 4.14721610 4.13449391 4.15713082 4.32240698 4.14721955 4.13410105 4.13527009 N/A
S. lactis 4.11833448 4.11704233 4.20542581 4.48685995 4.11835404 4.11444417 N/A N/A
S. coelicolor 4.02577264 4.02193717 4.08898817 4.34268726 4.02578603 4.02016095 N/A N/A

M. jannaschii 4.07062562 4.06000245 4.10896192 4.33855221 4.07063677 4.05912961 N/A N/A

PBCV-1 4.19687421 4.19365411 4.28822487 4.51069295 4.19689980 4.19025381 N/A N/A
Bacillus virus G 4.12992087 4.13248044 4.23425136 4.50933939 4.12994504 4.12926900 N/A N/A
CroV 4.07027499 4.05785806 4.11650459 4.35144766 4.07029393 4.05534269 N/A N/A
EhV-86 4.20884583 4.18796662 4.28328290 4.51012196 4.20887430 4.18418209 N/A N/A
Human SARS-CoV 4.20341583 4.26565712 4.40951156 4.36520923 4.20365796 4.23252123 N/A N/A

entries in the result tables are evident of such cases, where negative first part message lengths
(I(~Θ)) are observed. For some proteomes (including all viral proteomes),even n = 2 models
give invalid total message lengths due to insufficient amount of data. Table 4.6 gives an idea
into how entropies differ across varying orders, by computing the bits per residue in terms of
the negative log likelihood.

4.4.3 Inference of a Null Model over the Proteins from All Species

While a species-wise null model is beneficial for encoding protein sequences from that particular
species, a more universal null model inferred over all observed proteins across all different species
is ideal for general applicability. UniProt (UniProt Consortium and others, 2017) is a suitable
data source for this purpose. The full reviewed database of UniProt had 554,515 protein
sequences in total, with an average length of 357.99 residues (at the time of this experiment).
After filtering for reliable data (22,599 gene unknown proteins, 14,314 unreliable proteins)
and removing multiplicity, 129,788 sequences were left with an average length of 454.30 and
58,963,216 residues. Table 4.7 and 4.8 present I(~Θ, D) total message length breakdown and
entropies for Markov models of varying order. As expected, entropy decreases when the Markov
order n increases.

4.4.4 A Short Analysis of Null Models across Different Species

A short analysis of null model estimates across different species and the UniProt can provide
insights on their similarities and differences with respect to one another. Figure 4.4 illustrates a
KL divergence distance matrix across all inferred null models alongside a dendrogram describing
an agglomerative hierarchical clustering (with average linkage) of those models based on the
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Table 4.6: Entropy (bits per residue) in terms of the negative log likelihood (I(~Θ|D)) for Markov
models of varying order inferred across proteomes of different species and viruses

Species n = 0 n = 1 n = 2 n = 3

H. Sapiens 4.17777201 4.16248963 4.14723940 4.11053785
A. thaliana 4.17779354 4.16550554 4.15455279 4.11396020
M. musculus 4.17637062 4.16228573 4.15151507 4.12419443
D. melanogaster 4.18815855 4.16747855 4.14549406 4.08109271
S. cerevisiae 4.16127334 4.15030356 4.13738615 4.06993308
P. ovale wallikeri 4.14225892 4.12214898 4.09949165 3.89544545

E. coli 4.15354042 4.13861964 4.12817687 4.04759926
C. tetani 4.08795592 4.07375131 4.02791311 3.69914278
M. tuberculosis 4.03245141 4.01671134 4.00076545 3.88975122
B. subtilis 4.14699739 4.13137518 4.12014948 4.03330122
S. lactis 4.11726613 4.10314127 4.07072178 3.80242301
S. coelicolor 4.02500930 4.01183073 3.98749908 3.78746091

M. jannaschii 4.07002165 4.05170458 4.02254210 3.82846711

PBCV-1 4.19552710 4.17617742 4.12168938 3.71040108
Bacillus virus G 4.12863455 4.11586954 4.07712637 3.75950689
CroV 4.06923676 4.04431430 3.98509421 3.68942153
EhV-86 4.20736614 4.16885894 4.10426355 3.67885431
Human SARS-CoV 4.19387372 4.16346452 3.76158155 2.94719074

Table 4.7: I(~Θ, D) total message length breakdown for the Markov models of varying order,
inferred over all reliable UniProt protein sequences

Markov order 0 Markov order 1 Markov order 2 Markov order 3

I(~Θ) I(D|~Θ) I(~Θ) I(D|~Θ) I(~Θ) I(D|~Θ) I(~Θ) I(D|~Θ)
282.80 246608016.52 4564.68 245951600.02 47844.93 245345939.72 N/A 244434825.28

Table 4.8: Entropy (bits per residue) for the Markov models of varying order, inferred over all
reliable UniProt protein sequences

Scheme Markov order 0 Markov order 1 Markov order 2 Markov order 3
Adaptive code 4.18240917 4.17134914 4.16205736 4.15673963

MML 4.18240924 4.17134921 4.16181140 N/A

MML-L(~Θ) 4.18240415 4.17126446 4.16081646 4.14096002

given distance matrix. Following intuitive and interesting features can be grasped from this
structure.

• H. sapiens and its model organism M. musculus are the closest, reflecting the genomic
similarity between humans and house mouse. Looking further, all other model organisms
of humans (i.e. D. melanogaster, A. thaliana and E. coli – except for S. cerevisiae)
fall under a single group at a higher level. S. cerevisiae is somewhat related to the
above group at a much higher level, yet interestingly being grouped with three viral
proteomes: Paramecium bursaria Chlorella virus 1, Emiliania huxleyi virus and Human
SARS coronavirus.

• Species that have compositional bias in their genomes are clustered together. For instance,
both prokaryotes, M. tuberculosis and S. coelicolor with GC rich genomes are grouped
together. Another group is C. tetani and M. jannaschii which are closer to each other.
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C. tetani is an AT rich genome. M. jannaschii genome is also lower in GC content on
average (Garrett, 1996). However, the AT rich L. lactis resides in a different group.
(Note: compositional bias of these genomes are discussed by Yu et al. (2003)).

• Another observation is that, all multi-cellular eukaryotic proteomes are in a single cluster.
The single-cellular P. ovale wallikeri is separately positioned.

• B. subtilis and L. lactis are both gram positive bacteria, and they are grouped together.

• Cafeteria roenbergensis virus is a large virus (Fischer et al., 2010), separated from many
other proteomes – specifically from other viruses. All other viruses are in the same high-
level group, except for this virus and Bacillus virus G.

• An interesting group is Bacillus virus G (a bacteriophage virus) and P. ovale wallikeri
(a eukaryote)

Overall, we can conclude that UniProt estimates are good enough to represent eukaryotes,
prokaryotes and viruses in general, despite exceptions to the ones with biased genomes (AT
rich/GT rich) or having other interesting features (such as, being a large virus or a bacte-
riophage). Figure 4.5 presents null model probability distributions of all species and UniProt
protein sequences involved in this study.

BC
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Figure 4.4: KL divergence distance matrix and clustering of Markov order 0 null models
across the proteomes of Eukaryota: H. sapiens (HS), A. thaliana (AT), M. musculus (MM),
D. melanogaster (FF), S. cerevisiae (SC), P. ovale wallikeri (PO); Prokaryota: E. coli (EC),
C. tetani (CT), M. tuberculosis (MT), B. subtilis (BS), L. lactis (LL), S. coelicolor (SCol),
M. jannaschii (MJ); Viruses: Paramecium bursaria Chlorella virus 1 (PBCV), Bacillus virus
G (BVG), Cafeteria roenbergensis virus (CroV), Emiliania huxleyi virus (EhV), Human SARS
coronavirus (CoV); and UniProt protein sequences. Note: all distance measures are in nits.
(Note: clustering was generated using MATLAB R2017a (The Mathworks, Inc., 2017))
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Figure 4.5: MML estimates of amino acid null model probabilities (reflecting the residue fre-
quencies), (a) for proteomes across Eukaryota: H. sapiens (HS), A. thaliana (AT), M. musculus
(MM), D. melanogaster (FF), S. cerevisiae (SC), P. ovale wallikeri (PO); (b) for proteomes
across Prokaryota: E. coli (EC), C. tetani (CT), M. tuberculosis (MT), B. subtilis (BS), L. lactis
(LL), S. coelicolor (SCol), M. jannaschii (MJ); (c) for Viral proteomes: Paramecium bursaria
Chlorella virus 1 (PBCV), Bacillus virus G (BVG), Cafeteria roenbergensis virus (CroV),
Emiliania huxleyi virus (EhV), Human SARS coronavirus (CoV); and (d) for the collection of
UniProt protein sequences.
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Chapter 5

Alignment Three-state Machine as a
Function of Evolutionary Time

“Nothing in Biology Makes Sense Except in the Light of Evolution”

– Theodosius Dobzhansky

The previous chapter established the core MML framework for protein sequence comparison.
However, it mainly estimated the best alignment three-state machine parameters ~Θ based on a
bland (uniform) prior, although it provided a scope for the use of more informative ones. Thus,
this chapter achieves the goal of estimating informative priors for the three-state machine as
a function of evolutionary time. Specifically, it discusses the derivation of an evolutionary-
time-dependent three-state machine given any stochastic model of amino acid substitutions.
Addressing this relationship unifies the treatment of substitutions, insertions and deletions,
which remain disconnected in the practice of sequence comparison. Specifically, the outcome
of this chapter is, for any given Markov model of amino acid substitution, a corresponding set
of (Markov-)time-dependent Dirichlet probability distributions inferred using MML over any
stated source collection of alignments.

Parts of the material presented in this chapter are published in:
Sumanaweera, D., Allison, L. and Konagurthu, A.S., 2019. Statistical compression of protein
sequences and inference of marginal probability landscapes over competing alignments using
finite state models and Dirichlet priors. Bioinformatics, 35(14), pp.i360-i369.
DOI: 10.1093/bioinformatics/btz368

5.1 Motivation

The relationship between evolutionary time and indel events has received a limited attention
when studying the parameter space of a protein sequence alignment. Several noticeable
efforts are present in literature, to connect indel events with sequence divergence. Amongst
them is Blake and Cohen (2001) who tested the improvement of alignments by constructing a
set of substitution matrices1 for different contexts of evolutionary time and obtained optimal

1structural superposition based substitution matrices
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gap penalties for each one. They estimated matrices for defined ranges of sequence identity
percentage, binned at a width of ten, while also obtaining versions for aggregated bins. Earlier,
a comprehensive study was done by Vogt et al. (1995) to optimise gap penalties for each of a
diverse set of scoring matrices2 under a range of sequence identity percentage bins, gauging the
improvement of sequence alignments in comparison to a reliable structural alignment dataset.

Several papers (Gonnet et al., 1992; Chang and Benner, 2004; Benner et al., 1993) have also
explored the relationship between evolutionary time3 and the length of gaps. They challenged
the common notion of gap length modelling under the geometric distribution, by empirically
estimating a generalised Zipfian distribution. Under a Zipfian model, Pr(gap of length L)=
c1.L

−c2 , where c1 and c2 are parameters. (Chang and Benner (2004) empirically estimated
c1 = 1, c2 = 1.8. This was previously estimated over a small dataset as c1 = 1, c2 = 1.7).
Gonnet et al. (1992) and Benner et al. (1993) observed that the occurrence probability of a gap
grows in a linear fashion with evolutionary time t, for small values of t under the PAM Markov
model of evolution (PAM-t). However, they claim the Zipfian distribution parameters to be
independent of time. Chang and Benner (2004) further verified that the Zipfian approximation
does not change across a few bins spanned over PAM-10 and PAM-100, and also over the
f2 measure (“the fraction of conserved nucleotides at the third position of the corresponding
codon where the residue is conserved”), accounting for varying levels of selective pressure.
A surprising observation is a moderate decrease in expected gap length with respect to an
increase in PAM-t time (Benner et al., 1993). On the contrary, experiments by Pascarella and
Argos (1992) have evinced an exponentially decreasing behaviour of the expected gap length
as the percentage of sequence identity increases. Qian and Goldstein (2001) presented another
empirical indel length distribution by fitting a linear combination of four exponential functions
(multi-exponential distribution) to explain the probability of a gap over a set of distantly
related proteins of < 25% sequence identity. However it does not explore the distribution
as a function of time. Later, Pang et al. (2005) parameterised this on varying evolutionary
time. Recently, Holmes (2017) discussed approaches for time-dependent gap length modelling
in pairwise alignments, highlighting the potential of applying continuous-time Markov models
for the purpose.

Despite all these efforts, the field has resisted formal attempts to connect indels with se-
quence divergence. In practice, the affine gap penalty function with empirically chosen gap open
and extension penalties are considered a good approximation to address insertions and dele-
tions, under the assumption that the gap lengths follow a geometric distribution (Cartwright,
2006). While this is a useful approximation in practice, it however does not address the prob-
lem. Therefore, this chapter is an attempt to address this disconnect using rigorous probabilistic
models.

5.2 Estimation of Dirichlet Distributions

Recalling the symmetric properties of the three-state machine discussed in §4.1.1, it entails a
point estimate in a unit 1-simplex (for the case of Pr(m|m)) and unit 2-simplex (for the case
of Pr(i|i) and Pr(m|i)). Accordingly, the free-parameter vector of the three-state machine is:
~Θ = {Pr(m|m), Pr(i|i), Pr(m|i)}. The usage of ~Θ under predefined Dirichlet probability models
was briefly introduced in §4.1.1. Here, we present the details of how such Dirichlet distributions
can be derived from any corpus of existing (i.e. benchmark) alignments. Specifically, these

2including a series of PAM and BLOSUM scoring matrices, as well as the Gonnet matrix (Gonnet et al.,
1992).

3defined by time t under the PAM Markov model of evolution. See Chapter 6 for a comprehensive discussion.
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Dirichlet distributions are inferred as a function of the evolutionary-time-parameter under a
specified Markov matrix of amino acid substitutions. These time-dependent Dirichlets, in turn,
allow us to estimate the free-parameters ~Θ of the 3-state machine as a function of the time-
parameter.4

More formally, suppose we have a stochastic model M that generates a set of time-dependent
transition-probability matrices of amino acid substitutions, Φ = {M1,M2, ...,MtMax

}, where the
time-parameter is an integer in the range t ∈ [1, tMax]. Then, given any benchmark collection
of protein alignments, A = {A1,A2, . . . ,A|A|}, the optimal time-parameter ti can be inferred
for each alignment Ai ∈ A, using the the search method described in §4.1.2 of the previous
chapter. This yields time (t) dependent subsets of alignments, on which Dirichlet distributions
and respective 3-state machine parameters are inferred. The next section explains the details
for these estimations.

5.2.1 Dirichlet Probability Distribution

The Dirichlet distribution models proportions (ratios), that is, points in a (k − 1)-dimensional
unit simplex. It is often used as a prior to the multi-state distribution for which it is a conjugate
prior. The Beta distribution is the k = 2 case of this model. Thus, Dirichlet is also spoken
of as the generalisation of the Beta distribution. This section briefly describes the associated
statistics of the Dirichlet distribution.

Let Dir(~α) be a Dirichlet distribution with a parameter vector ~α = [α1,α2,...αk]. that

describes a data sample ~Θ = [θ1,θ2,...θk] (
∑k

i=1θi = 1), representing a probability vector over
some state space of dimension k. Each αi is analogous to a pseudo-count of successes for the
state i. The following reparameterisation of ~α shows how the distribution’s probability density
concentrates (controlled by the parameter κ) around its mean vector ~µ within the k−1 simplex.

~α = κ~µ =

( k∑
i=1

αi

)
︸ ︷︷ ︸

κ=concentration

[
α1∑k
i=1αi

,
α2∑k
i=1αi

, . . . ,
αk∑k
i=1αi

]
︸ ︷︷ ︸

~µ=mean vector

The mode vector [x1, x2, ...xk] of Dir(~α) is defined by xi = αi−1
κ−k

(only for αi> 0). Following

defines the probability density function (PDF) f(~Θ |~α) of Dir(~α):

f(~Θ |~α) =
1

B(~α)

k∏
i=1

θi
αi−1 (5.1)

where, B(~α) is the multivariate form of the Beta function:

B(~α) =

∏
∀i Γ(αi)

Γ(
∑
∀i αi)

4In this thesis, an independent Dirichlet model is estimated for each discrete bin of evolutionary time in
some defined time range [1, tMax]. However, as a future direction, this modelling exercise can be pursued further
by exploring ways to parameterise the three-state machine using continuous-time Markov models.
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See Figure 5.1 for example PDF plots). Respectively, the likelihood over some data D with N

samples: D = [~Θ1,~Θ2,...~ΘN ] is defined as:

f(D |~α) =
N∏
n=1

f(~Θn |~α).

Accordingly, the negative log likelihood function is:

L(~α) = −N log2 Γ(κ) + N
k∑
i=1

log2 Γ(αi)−
N∑
n=1

k∑
i=1

(αi − 1) log2 (θn,i)

Special case at k = 2: Beta distribution

This figure plots a few example visualisations of a
unit 1-simplex under different parameter settings
for Beta distribution. The x-axis positions the
unit 1-simplex while the y-axis gives the probabil-
ity density value under the PDF of the Dirichlet
distribution given in the Equation 3.23. Note
how the curve becomes sharper at its mode when
concentration (κ = α1 + α2) parameter increases.
The shape of the distribution is controlled by
the parameter vector ~α. When α1 = α2, it gives
a symmetric distribution centered at x= 0.5.
~α= [1, 1] case denotes the uniform distribution.

Figure 5.1: Some example visualisations of a unit 2-simplex under four different parameter
settings for Dirichlet distribution: (a) ~α = [2, 2, 4], (b) ~α = [3, 2, 6] , (c) ~α = [6, 6, 6], and (d)
~α = [10, 10, 10]. The x and y axes position the unit simplex, while z-axis gives the Dirichlet
PDF. The yellow colour dot and black colour dot refer to the probability density values of the
mode vector and mean vector, respectively. Note how the mode and mean get distant as the
distribution becomes asymmetric in (a) and (b), while they coincide for symmetric Dirichlet in
(c) and (d). Also, as κ (the sum of the pseudocounts) increases, the distribution becomes more
and more sharp at the mode vector.
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where Γ(·) is Euler’s Gamma function5 (Note: Γ(z) =
∫∞

0
xz−1e−xdx definite integral for z ∈

C,Rez > 0 ). Solving for the first partial derivative, we get:

∂

∂αi
(L(~α)) = Nψ0(κ)− Nψ0(αi) +

N∑
n=1

log2 (θn,i)

where ψ0(·) is the Polygamma function of order 0 (Digamma function) (Note: Polygamma
function of order m: ψm(x) = ∂m+1

∂xm+1 log2 [Γ(x)]). As explained by Allison (2018), the observed
Fisher H of the negative log likelihood function is in the below special form:

H =



∂2L
∂α2

1

∂2L
∂α1∂α2

∂2L
∂α1∂α3

.. ..
∂2L

∂α2∂α1

∂2L
∂α2

2

∂2L
∂α2∂α3

.. ..

... ...

... ...

... ∂2L
∂α2

k

 =


c1 − z −z −z .. ..
−z c2 − z −z .. ..
... ...
... ...
... ck − z


where

−z =
∂2

∂αiαj
(L(~α)) = −Nψ1[

k∑
i=1

αi]

ci − z =
∂2

∂α2
i

(L(~α)) = Nψ1(αi)−Nψ1[
k∑
i=1

αi]

The expected Fisher information matrix Fisher(~α) can be computed as E
[
∂2

∂α2 (L(~α))

]
directly

from H, since all associated terms are constants (i.e. they do not depend on the data points).
Consequently,

Fisher(~α) = H

This yields a closed form for the matrix determinant. Accordingly, the determinant of this
Fisher matrix Fisher(~α), which indicates how sensitive the expected negative log likelihood
function L is to the changes of ~α, is given by:

det[Fisher(~α)] = Nk

(
k∏
i=1

ψ1(αi)

)(
1− ψ1(κ)

k∑
i=1

1

ψ1(αi)

)
(5.2)

where ψ1(·) is the Polygamma function of order 1 (Trigamma function)

Sampling randomly from a Dirichlet distribution: Suppose a k-dimensional probability
vector ~θ = (θ1, ..., θk) is to be sampled from a k-dimensional Dir(~α). A random sampling is
done as follows:

1. For each component αi ∈ ~α, generate a Gamma distributed random sample yi from the
Gamma distribution6 Γ(αi, 1)

5Gamma function extends the factorial function to complex numbers. (And for integer n, Γ(n) = (n− 1)!).
6The Gamma distribution is a family of continuous probability distributions including the Exponential

distribution, denoted by Γ(k, θ) with a shape parameter k and scale parameter θ. It models the waiting time
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2. L1-normalise the sampled vector ~y = (y1, ...yk)

The resultant vector ~y′ with y′i = yi∑k
i=1 yi

is Dirichlet distributed under Dir(~α).

5.2.2 MML based Dirichlet Estimation over Alignments

This section discusses the formulation of an MML protocol to communicate a set of alignment
three-state strings A of size |A| = N as data. An alignment string An ∈ A is encoded using

a 3-state machine with parameter ~Θn = {~Θn(m) = [Pr(m|m)], ~Θn(i) = [Pr(i|i),Pr(m|i)]}, defined
over two Dirichlet priors: Dirm(~αm) and Diri(~αi) (Note: these priors are applied commonly
across all alignments in A). The goal is to find the optimal ~αm and ~αi that minimise the total

message length I(~αm,~αi,~Θ,A), where Θ = {~Θ1, ~Θ2, . . . , ~ΘN}. Since the 1-simplex Dirichlet and
2-simplex Dirichlet models are independent from each other (as shown in §4.1.1 with Figure
4.1), this minimisation can be performed separately.

Below presents the general total message formulation which requires the communication
of ~αx, Θ(x) = {~Θ1(x), ~Θ2(x), . . . , ~ΘN(x)} and A(x) jointly, for any state x ∈ {m,i}. Note: A(x)

contains only the data instances relevant to the state of focus (i.e. for the case of x = m, all
instances of mm, mi, md state transitions are taken together; For the case of x = i, all instances
of ii, im, id, dd, dm, di state transitions are taken together). The associated two part message
length is:

I(~αx, Θ(x), A(x)) = I(~αx) + I(Θ(x) |~αx)︸ ︷︷ ︸
First part

+ I(A(x) |Θ(x),~αx )︸ ︷︷ ︸
Second part

bits (5.3)

The first part term I(~αx) denotes the statement cost of the Dirichlet parameters ~αx. Using
the Wallace and Freeman (1987) methods of estimation detailed in §3.3.2, this term expands
to:

I(~αx) = − log2 [h(~αx)] +
k

2
log2 (ck) +

1

2
log2 [det(Fisher(~αx))] bits

where h(~αx) is the prior on the Dirichlet parameters ~αx; ck is the optimal quantising lattice
constant (Conway and Sloane, 1984) associated with k degrees of freedom (c2 = 5

36
√

3
and c3

= 19

192×2
1
3

); and det[Fisher(~αx)] is the determinant of the Fisher information matrix of ~αx

given by the Equation 5.2. Further, using the reparameterisation of a Dirichlet parameter ~α
previously stated in §5.2.1, the prior term can be decomposed as:

h(~αx) = h(κx) · h(~µx)

by applying independent priors for concentration parameter κx and the L1-normalised mean
vector ~µx. In this thesis, ~µx is assumed to be uniformly distributed in a unit k−1 simplex. Thus,
h(~µx) is simply the reciprocal of the simplex volume. As a result, h(~µm) = 1√

2
and h(~µi) = 2√

3
.

On the other hand, κx controls the Dirichlet concentration about the distribution’s mode.
For any y diffusing with k degrees of freedom, Wallace and Dowe (1993) defined a well-behaved
prior for y in the form:

g(y) =
yk−1

(1 + y2)
k+1

2

until the kth occurrence of some continuous-time valued event. Usually, inverse transform sampling or an
acceptance-rejection method (Ahrens and Dieter, 1982) is applied for generating a Gamma distributed variate.
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Figure 5.2: Prior density function for 1-simplex (k = 2) and 2-simplex (k = 3) Dirichlet
concentration parameter κ

Before applying g(·) as a prior for κx, a normalisation constant is computed to ensure this as a
valid probability distribution: ∫ ∞

0

g(y) = 1

For k = 2, we can directly take h(κm) = g(κm), as the above is satisfied. However for k = 3,∫∞
0
g(y) = π

4
, which is not equal to 1. Therefore, this yields h(κi) = 4

π
g(κi). Figure 5.2 plots

the normalised prior density functions for κm(k = 2) and κi (k = 3).

The first part I(Θ(x)|~αx) term relates to sending the parameter vector ~Θn(x) of each align-
ment An ∈ A given a Dirichlet prior with parameter ~αx. Using the approximation specified in
Equation 3.15, the term can be expanded as:

I(Θ(x)|~αx) =

{ N∑
n=1

1

2
log2

(
1 +

det[Fisher(~Θn(x))]ck−1
k−1

f(~Θn(x)|~αx)2

)}
+
k

2
bits (5.4)

Recall the Fisher information of ~Θn(x) by Equation 3.21. Also Equation 5.1 provides the likeli-

hood of ~αx that describes ~Θn(x). Accordingly,

det[Fisher(~Θn(x))] =
Xk−1
n(x)( k−1∏

i=1

θi

)(
1−

k−1∑
i=1

θi

)
where Xn(x) is the total number of state transitions from state x to any other state (x→ ∗) found

in an alignment An, and θi ∈ ~Θn(x) is the MML estimate for the probability of a state transition
x→ i. Note: state m has Xn(m) as the total number of m→m, m→i and m→d transitions, while the
denominator refers to the product of MML estimates for Pr(m|m) and (1-Pr(m|m)) (i.e. Pr(∗|m))
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over An. Similarly, for state i, Xn(i) is the total number of i→i, i→m, i→d, d→d, d→m and
d→i transitions, with the denominator referring to the product of MML estimates for Pr(i|i),

Pr(m|i) and (1-Pr(i|i)- Pr(m|i)) (i.e Pr(d|i)) over An. Each θi ∈ ~Θn(x) is computed using the
Equation 3.25 derived in §3.3.3 for MML based multi-state model estimation over a Dirichlet
prior. Accordingly,

θi =

(
xn(x),i + αx,i − 1

2

Xn(x) + κx − k
2

)

where, xn(x),i is the number of state transitions x→ i, and αx,i is the corresponding component
(i.e. pseudocount) for a state i in the Dirichlet prior parameter vector ~αx. Formally, we can
also denote the full parameter vector (with free parameters and dependent parameter together)

by θ̄i ∈ {~Θn(x), 1−
∑k−1

i=1 θi}.

The second part I(A(x)|~Θ(x), ~αx) deals with transmitting 3-state data A(x) of each alignment

An ∈ A relevant to state x, using the parameters ~Θn(x) and ~αx stated in the first part of the
message. Accordingly:

I(A(x)|~Θ(x), ~αx) =
N∑
n=1

{
I(An|~Θn(x), ~αx) +

(
k − 1

2

)}
bits (5.5)

with I(An|~Θn(x), ~αx) =
k∑
i=1

(
xn(x),i ×− log2 (θ̄i)

)
, where θ̄i ∈ {~Θn(x), 1−

∑k−1
i=1 θi}

The following sections present the specifics related to a one-time exercise of estimating the
optimal three-state machine as a function of evolutionary time, using Dirichlet probability
distributions and their estimation introduced in the above sections.

5.3 Estimation of Time-dependent Three-state Machines

The inference of alignment three-state machine as a function of evolutionary distance de-
pends on a randomly sampled, reliable structural alignment dataset. All those alignments
were grouped by their optimal evolutionary time t ∈ [1, 1000] using the PAM (Dayhoff et al.,
1978) (ΦPAM) series of substitution matrices). Each Mt ∈ ΦPAM provides transition probabili-
ties that suitably explain amino acid substitutions occurring during some discrete evolutionary
time t. (Details of how these matrices behave as a function of t are comprehensively discussed
in Chapter 6. The search for the optimal t of a protein sequence pair was done using the iter-
ative quaternary search method explained in §4.1.2, over all matched amino acid pairs. Next,
the MML estimation method described in §5.2.2 was used to obtain optimal 1-simplex and 2-
simplex Dirichlet models for each group of alignments. This allowed a t versus Θ mapping to be
included as part of the codebook defined in the MML protein alignment framework introduced
in Chapter 4.

The following section elaborates on the random sampling and filtering procedure employed
for preparing a reliable benchmark alignment dataset prior to Dirichlet model estimation.
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5.3.1 Choosing a Source Collection of Protein Structural Domain-
pairs

The quality and reliability of time-parameterised Dirichlet priors solely depend on: (1) the
source collection of protein alignments, and (2) the quality of their specified sequence rela-
tionships/alignments. Thus, a main requirement in selecting the benchmark alignment dataset
was to include protein domain pairs with a detectable amino acid relationship and a sufficient
representation of varying sequence distances (evolutionary times).

Initially, a set of 118,384 unique protein domain pairs were randomly sampled from the
Structural Classification of Proteins (SCOP - version 2.07) database (Murzin et al., 1995)
(discussed in §2.2.3). Since our interest is on proteins with related amino acid sequences,
the random selection of those pairs was restricted to the SCOP levels of superfamily and
family. The domains within the same family are often closely related in their sequence,
while those from the same superfamily but under different families contain sequences which
have diverged, yet carrying (often) a detectable sequence relationship. Accordingly, the source
collection of protein domain pairs is composed of 47,687 pairs that are related at the family

level, and 70,697 pairs that are related at the superfamily level.

Below describes the random sampling method used to arrive at this inceptive data source
for the task at hand.

Random sampling method:

A domain pair is randomly selected by utilising the SCOP organisation of domains within its
hierarchical classification tree. The internal nodes of this tree are associated with the four-level
classification of protein domains (specified in §2.2.3). Each domain is uniquely represented by
a leaf node. A traversal from the root node to a leaf node yields a domain.

The sampling procedure involves traversing from the root to a leaf node, passing each of the
SCOP levels: class, fold, superfamily and family in order. At each node of this traversal,
until a leaf node (domain) is reached, a child node is selected from the available children (i.e.
nodes in the level below the current node), by sampling randomly based on the weights (i.e.
number of leaves) of their respective subtrees.

Thus, to identify domain pairs within the same superfamily but under different families,
the traversal first proceeds from the root until it reaches the level of superfamily. Then the
weighted random sampling method selects two random domains (leaves) from two different
families (child nodes), while considering only the superfamilies with ≥ 2 families. Similarly, to
identify pairs from the same family, when the traversal reaches family level nodes, a pair of
its children (leaves) are randomly selected, while only considering families with ≥ 2 domains.

Preparing alignments for the source collection:

Since all domain pairs chosen from the SCOP database have their associated three-dimensional
atomic coordinate information, the pairs can be structurally aligned to decipher amino acid
residue-residue correspondences. The reliability of these correspondences are more trustworthy.
This is because, functional constraints on evolving protein domains ensure that their structures
are far more conserved than their amino acid sequences (Lesk, 2016) (See §2.2.1 for discussion).
Thus, each sampled SCOP domain pair was structurally aligned using the MMLigner structural
alignment program (Collier, 2016). This generated an initial benchmark dataset of 118,384
three-state alignment strings.
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Further filtering and preprocessing steps:

The above prepared structural alignment collection was filtered and preprocessed for later mod-
elling exercises (discussed in Chapter 6), to arrive at a more reliable benchmark dataset. First,
sequence pairs with an optimal t = 0 evolutionary time (i.e. accounting for 100% sequence
identity) were removed, bringing down the dataset size to 111, 009. Next, the filtering criteria
only retained alignments that have a Root-mean-square deviation (RMSD) ≤ 5, with at least
60 residues of coverage (i.e. the number of matched pairs) and no chain breaks. The spe-
cial amino acid symbols (i.e. ones other than the naturally occurring 20 amino acid symbols
– ‘$’,‘B’,‘O’,‘U’,‘X’,‘Z’,‘/’) were ignored as well. Further they were preprocessed to exclude
terminal gaps.

The above preprocessing exercise resulted in a final dataset of 59, 092 structurally aligned
protein domain pairs, with 22, 720 at family level and 36, 372 at superfamily level. The
average sequence length is 188.352, and the average sequence identity percentage is 26.447%.
This covers 96, 129 unique SCOP domains across all pairs, with their alignments containing a
total number of 8, 145, 678 substitution pairs and 3, 327, 218 indels. 17.89% of these pairs cover
same-species relationships, while the entire set covers 2801 different species. The main repre-
sentative is Homo sapiens (9.14%), followed by Saccharomyces cerevisiae (1.74%), Escherichia
coli (1.35%), Mus musculus (1%), Bos taurus (0.2%),Staphylococcus aureus (0.2%) and others.
Out of the available kingdom information for 18, 287 pairs, 15, 426 were three types of same
kingdom comparisons, with the main representation being Metazoa-Metazoa (13, 458 pairs) fol-
lowed by Fungi-Fungi (1, 354), and Viridiplantae-Viridiplantae (614). Out of 47, 217 pairs that
had phylum information, same phylum-phylum comparisons have the primary representation
of Chordata (12, 020 pairs), followed by Proteobacteria (4, 658 pairs) and Ascomycota (1, 235
pairs). All kingdom, phylum and species information were retrieved from UniProt.

5.3.2 Searching for the Optimal Dirichlet Parameters

Given a benchmark alignment dataset of SCOP domain pairs (prepared as explained in the
previous section), the next step of estimating the time-parameterised three-state machine is to
search for the optimal Dirichlet models that explain the three-state strings in this dataset.

Recalling §4.1.1 with the finite state machine illustrated in Figure 4.1, the free parameter
Pr(m|m) related to the m state, and {Pr(i|i),Pr(m|i)} free parameters related to i state (equiva-
lently d state), lie in a unit 1-simplex and unit 2-simplex, respectively. Accordingly, estimating
the Pr(m|m) parameter involves the inference of a Dirichlet model describing a unit 1-simplex.
Similarly, estimating Pr(i |i) and Pr(m |i) parameters involve the inference of a Dirichlet model
that describes a unit 2-simplex.

Hence, our aim is to estimate time-parameterised 1-simplex and 2-simplex Dirichlet models,
by searching for their optimal parameters ~αm and ~αi, for each group of alignments that represents
a distinct evolutionary time t ∈ [1, 1000] under the PAM model of evolution. Optimising the
parameters of 1-simplex and 2-simplex Dirichlet models are carried out independently under
the general MML objective function given by the Equation 5.3. This thesis implements two
possible approaches to minimise the objective function: (1) an exhaustive method (to some
fixed precision of parameters), and (2) a Markov Chain Monte Carlo (MCMC) method.7 The
exhaustive approach is used in this Chapter as the initial inference method, which is then
replaced later at Chapter 6 by the MCMC method.

7Note: There also exists maximum likelihood based approaches for Dirichlet model estimation. For instance,
Ye et al. (2011) presented an information theory based method using the minimum description length principle.
This thesis formulates the problem under the minimum message length criterion.
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5.3.3 Exhaustive Method

This method refers to sweeping a viable subspace of the Dirichlet parameter space of ~α ex-
haustively, under a fixed parameter precision. The reparameterisation given in Equation 5.2.1
enables this to be processed in terms of the mean vector ~µ and concentration κ. The iterative
search goes as follows.

When estimating the 1-simplex Dirichlet model for the match state (Pr(m|m)), the search
sweeps over the range 0.7 ≤ µ1 < 1.0 with 0.001 increments. (A lower limit of µ1 = 0.7 is a fair
choice since it associates a sensible average length of 3 for a match block). For each possible
value of µ1, κ is explored in the range (κlo, κhi], where κlo is a lower bound to ensure that all
components of ~α > 1 (this in turn ensures the availability of a mode vector). κhi is an upper
bound that limits Dirichlet model from acquiring a highly concentrated, sharp peak. κlo is
chosen such that, if ( 1

µ1
< 1

µ2
), κlo = d 1

µ2
e, otherwise, κlo = d 1

µ1
e. κhi was chosen to be 600.

When estimating the 2-simplex Dirichlet model for the insert state (Pr(i |i) and Pr(m
|i)), the parameter space is explored for each κ ∈ (3, 100), by setting lower bounds for µ1 and
µ2 as 1

κ
. The increments happen by 0.01.

5.3.4 Markov Chain Monte Carlo Method

This approach refers to the Monte Carlo method of Metropolis-Hastings algorithm and Simu-
lated Annealing (SA) (Metropolis et al., 1953; Kirkpatrick et al., 1983) for Dirichlet parameter
estimation. It is also used in Chapter 6 for a separate purpose.8 This section first gives a
preliminary view to the general SA process, and then go into describing how it was employed
for finding optimal Dirichlet parameters.

Simulated Annealing

Simulated Annealing (Kirkpatrick et al., 1983) is a heuristic search based on an analogy of
cooling solids (into a minimum energy state). The system starts with a random arrangement
(i.e. state) at a high temperature, and a cooling schedule is run to gradually decrease the
temperature. As the system cools down, the molecules rearrange as to obtain a more stable,
lower energy state. For a fixed temperature T at thermal equilibrium, the energy distribution
of all possible states are described by a Boltzmann distribution. Thus, the probability of the
system in a certain energy state E is:

Pr(E) ∝ e−
E
RT where R = Boltzmann constant

As the temperature decreases, the amount of molecules in higher energy states also drops,
realising lower energy states to be more probable for the system, shifting the distribution to be
more left skewed.

Given a temperature T and a random system state as the initial state, a Metropolis Monte
Carlo method (Metropolis et al., 1953) simulates the evolution of the system state into a thermal
equilibrium. The process perturbs the current system state to generate a new state. (This
perturbation happens such that the next state is a neighbouring state – not too different from
the current state). If the new state is lower in energy than the current state (i.e. if the energy
difference ∆E > 0), it is accepted and the perturbation process continues with the new state.

Otherwise it is accepted with a probability e−
∆E
RT , referred to as the Metropolis criterion. After

many iterations, the probability distribution approaches the Boltzmann distribution. Next, the
temperature is slightly lowered and the Monte Carlo method is repeated until a new thermal

8For deriving optimal Markov amino acid substitution models in §6.3
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equilibrium with a new Boltzmann distribution is reached. This process is iterated until some
minimum threshold temperature is reached. At higher temperatures, more accepts can be
expected from the Metropolis criterion.

The Monte Carlo method of evolving the system towards thermal equilibrium is analogous to
an irreducible and reversible Markov chain of energy states, reaching its stationary distribution
(See §6.2 for more details on Markov models and their properties). This Markov model satisfies
the following equation (known as the detailed balance):

Pr(x) Pr(x→ y generation) Pr(x→ y acceptance)

= Pr(y) Pr(y → x generation) Pr(y → x acceptance)

Commonly, a microscopic reversibility is imposed by a symmetric probability for a trial move,
where Pr(x → y generation) = Pr(y → x generation)(Frenkel et al., 2017). Consequently, the
detailed balance equation becomes:

Praccept(x→ y)

Praccept(y → x)
=

Pr(y)

Pr(x)

The Metropolis acceptance rule is the most common amongst many others that satisfy the
above criterion (Frenkel et al., 2017):

Pr
accept

(x→ y) = min

{
1,

Pr(y)

Pr(x)

}
Accordingly, the acceptance of the new state is always guaranteed with a probability of 1,
when the new state is more probable than the current state. In contrast, if the new state is less
probable than the current state, the ratio of the stationary probabilities are taken such that, if
Pr(y) is closer to Pr(x), it is more likely to be accepted.

Figure 5.3: An example plot describing how state energy distribution (Maxwell-Boltzmann
distribution) at thermal equilibrium moves as the temperature T decreases (T3 < T2 < T1).
The same energy state E1 becomes less probable when T drops. Analogous to this cooling
process, simulated annealing optimisation explores higher energy states at high T , with the
aim of overcoming local optima and moving into different regions in the solution landscape.
(Note: The curves in this plot were generated using the equations defined at http://web.mit.
edu/8.13/matlab/Examples/maxboltz.m for illustration purpose)

http://web.mit.edu/8.13/matlab/Examples/maxboltz.m
http://web.mit.edu/8.13/matlab/Examples/maxboltz.m
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“Monte Carlo method is a stochastic trajectory through configuration space” (Attard, 2002).
The objective is to generate a sequence of states from the system state space. The naive
method (i.e. a random walk around the states) treats all states as equiprobable. However, a
selection bias based on the energy of the state is important such that the lower energy states
are preferred.

In SA, where we consider the state energy distribution at thermal equilibrium to be Boltz-
mann, the ultimate goal of MCMC under a given temperature T is to reach this distribution as
the stationary distribution, which reflects the lowest energy state under the defined T . There-
fore, for any state xi for which the energy of the system is Ei, we have:

Pr(xi) ∝ exp

{
−Ei
RT

}
This gives:

Pr
accept

(x→ y) = min

{
1, exp

(
−∆E

RT

)}
where ∆E = Ey − Ex

When T decreases, the stationary distribution changes, with lower energy states becoming more
probable than before. Attard (2002) states that: “The Metropolis algorithm has the effect of
keeping the trajectory that the system follows through configuration space close to the energy
valley floor; at lower temperatures, lower energy states dominate; at higher temperatures, more
energetic configuration become increasingly accessible”. As the temperature goes down, the
system becomes more stable with identifying lower energy states, and therefore, the number
of accepts can be expected to reduce. If it is an energy increase, the state is accepted with
a probability proportional to the Boltzmann factor of the change in energy (i.e. ratio of the
current state probability to new state probability).

This thesis applies the above described Simulated Annealing method at two instances.
The following section relates to the first instance, that is to find the optimal Dirichlet
parameters which minimise the objective function defined by Equation 5.3. The second
instance is discussed under Chapter 6 which utilises it for optimising Markov models of
amino acid substitution.

MCMC Search for the Optimal Dirichlet parameters

The search for the optimal Dirichlet parameters followed the Simulated Annealing approach
described above, by running a single Markov chain of evolution until it reaches its stationary
distribution under a temperature value of 1.9 It is analogous to evolving a system towards
thermal equilibrium under a constant temperature, starting from some initial state. A state
reflects the energy of the system. Equivalently, in the context of Dirichlet estimation, a state
of the system refers to some ~αx parameter vector of the Dirichlet model related to the state x

∈ {m, i}. The energy of the state is explained by our objective function (Equation 5.3). The

9This MCMC search is used in Chapter 6 to infer Dirichlet distributions under several different substitution
models. It begins with a reasonable starting point for Dirichlet parameters, based on the ones obtained in
this Chapter using the exhaustive method under the PAM substitution model. These parameters are in the
near-neighbourhood to those that can be inferred using varying substitution models. Thus, the inference can
be made efficient by not running the entire cooling schedule of the simulated annealing process, but a single
Markov chain of evolution under a constant temperature of 1.
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Function
Perturb Dirichlet Param(~αx):
{κ,~µ} ← decompose(~αx);
u1 ← random uniform(0, 1);
if u1 ≤ 0.5 then

µ̂← Perturb Mean(~µ,〈state〉);
end
else

κ←
Perturb Concentration(κ);

end

return κ.~µ

Function Perturb Mean(~µ,〈state〉):
if 〈state〉 = match then

κ̄← 10000;
end
else

κ̄← 1000;
end

return sample dirichlet(κ̄.~µ)

Function Perturb Concentration(κ):
δ ← random uniform(0.1, 10);
u2 ← random uniform(0, 1);
if u2 ≤ 0.5 then

κ ← κ + δ;
end
else

κ ← κ - δ;
end

return κ

Function sample dirichlet(~α):

Init ~y ← ~0, sum← 0 ;
for (i = 1→ |~α|) do

yi ← gamma random(~αi, 1);
sum← sum + yi;

end
for (i = 1→ |~α|) do

yi ← yi/sum ;
end

return ~y

Figure 5.4: Pseudocode for perturbing the parameter of a Dirichlet distribution

Markov chain is evolved by perturbing the current state. The perturbed state is evaluated
for acceptance as the next state. If it is better in energy (i.e. the total message length is
lesser than that of the current state), the perturbed state is accepted as the next state in the
chain, with a probability of 1. If not, it is accepted with a probability of e∆E, where ∆E is the
energy difference between the current state and the perturbed state (Metropolis criterion). This
iterative process is continued for a reasonable number of iterations. If no more improvements
are made (i.e when the rejection rate is very high), it is an indication that the chain is closer
to its equilibrium state.

The Dirichlet parameter ~αx is perturbed as per the Perturb Dirichlet Param() function
defined in the pseudocode presented in Figure 5.4, utilising the reparameterisation given in
Equation 5.2.1. The Perturb Mean() function perturbs the mean vector of Dir(~αx), ~µ, by
sampling a new probability vector under a Dirichlet distribution with mean ~µ and some con-
centration κ̄. sample dirichlet() function depicts the sampling approach stated in §5.2.1.
Here we choose κ̄ = 10, 000, a higher concentration for state m, compared to κ̄ = 1000 for
state i. This is because, the 1-simplex model has less freedom due to just one free parameter,
making it more sensitive to a slight perturbation. On the other hand, 2-simplex model has two
degrees of freedom, thus we allow more flexible perturbations. As the Dirichlet concentration
decreases, the neighbourhood where a perturbed sample resides in the distribution expands.
See Table 5.1 for the average root-mean-square deviation (RMSD) between an example original
vector and its perturbed vector over different concentration values. Note: RMSD between two

vectors, ~x and ~y of size k is:
√

1
k

∑k
i=1(xi − yi)2.

For instance, let ~µ = {0.8, 0.2} for state x=m. If we perturb this vector 10, 000 times
by defining Dir(10000.~µ) as per the above function, it results in a new probability vector
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with a mean squared distance of 0.003190. On the other hand, the same experiment with
~µ = {0.3, 0.2, 0.5} for state x=i under Dir(1000.~µ) gives a 0.012654 mean squared distance.

Table 5.1: The average RMSD between the mean vector ~µ and a sampled probability vector from
Dir(~α) with ~α = κ̄ · ~µ, over 10,000 random samples, for two example mean vectors representing
state x=m and state x=i

κ̄ ~µ = {0.8, 0.2} (x=m) ~µ = {0.3, 0.2, 0.5} (x=i)
10 0.097035 0.122278

100 0.031632 0.039859
1000 0.010089 0.012654

10,000 0.003190 0.004000
100,000 0.001008 0.001265

5.3.5 Results and Insights

Initially, the exhaustive approach described in §5.3.3 was taken over the inceptive dataset of
118,384 structural alignments to arrive at optimal Dirichlet distributions for each t ∈ [1, 1000]
under the PAM series of substitution matrices.

Figure 5.5 illustrates how these models vary as a function of t, clearly depicting a correla-
tion. As shown in Figure 5.5a, Pr(m|m) follows a decreasing trend, starting from a very sharp
probability value at almost 1 for t = 1, gradually flattening the distribution while shifting away
towards lower probability values.

In contrast, Figure 5.5b shows a skewed shift in the distribution towards the left corner
of the unit 2-simplex, while becoming more concentrated as time t increases. Only sixteen
2-simplex models covering the range t ∈ [1, 1000] are visualised out of all thousand models.
The heat map shows the inferred concentration of probability density about the mode vector
(marked by a yellow colour cross). The black cross shows the mean under the same distribu-
tion. A triangle visualisation denotes the 2-simplex support for the L1-normalised transition
probability vectors of the insertion state. Its three corners (bottom-left, bottom-right, top)
show points where Pr(i|i), Pr(m|i) and Pr(deletion|i) individually becomes exactly 1, while
remaining two become 0. Figure 5.5b has truncated the unit-simplex support to clearly see
the differences (thus, only the bottom-left corner is visible). Altogether, the plots indicate an
increase in Pr(i|i) as the evolutionary time t increases (see how the mean and mode vectors
approach the bottom-left corner).

Insights on the expected matched block and gap lengths: The Pr(m|m) parameter
influences the observed lengths of the matched blocks produced by the three-state machine.
These lengths are geometrically distributed, and the probability of seeing a matched block of
length L using this parameter is: (1−Pr(m|m))×Pr(m|m)L−1. The expected length of a matched
block is given by 1

1−Pr(m|m)
. Furthermore, with the enforced symmetry of state transitions from

a match state to an insertion state or deletion state, we have 1−Pr(m|m)= 2× Pr(i|m) = 2×
Pr(d|m). This value informs the probability of observing the start of a gap at a given position in
an alignment produced by the state machine, informing the frequency of gaps to expect. Figure
5.6a plots the expected probability of observing a gap as a function of time t, when Pr(m|m) is
set to the mean and mode values under the respective Dirichlet distributions. The plot evinces
an approximately linear increase in probability of a gap open, within t in the range [1, 350].
This linear trend agrees with the observations by Gonnet et al. (1992); Benner et al. (1993).
Afterwards it acquires a rather stable value.
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(a) 1-simplex Beta plots

(b) 2-simplex Dirichlet plots

Figure 5.5: Visualisation of the inferred Dirichlet distributions, modelling the three free param-
eters of the finite state machine illustrated in Figure 2.4b. (a) 1-simplex distributions of Pr(m|m)
associated with state m, as a function of evolutionary time t ∈ [1, 1000]. (b) 2-simplex distribu-
tions of Pr(i|i) and Pr(m|i) associated with state i (and by symmetry, state d), as a function of
evolutionary time t = {1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 400, 600, 800, 1000} un-
der the PAM Markov model of amino acid substitutions. The yellow cross marker and black
cross marker highlight the mode and mean vectors, respectively.
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(a) (b)

Figure 5.6: (a) The distribution of mean (red) and mode (blue) values of 1−Pr(m|m) under the
1-simplex Dirichlet priors, as a function of evolutionary time t under the PAM substitution
model. (b) The distribution of expected gap lengths derived from the mode estimate of Pr(i|i)
under the inferred 2-simplex Dirichlet priors.

On the other hand, the Pr(i|i) parameter controls the length of a gap (i.e. block/stretch
length of insertions or, symmetrically, deletions). Again, these block lengths are geometrically
distributed with the probability of observing a gap of length L is defined by 1 − Pr(i|i) ×
Pr(i|i)L−1. Their expected gap length is given by: 1

(1−Pr(i|i))
. Figure 5.6b plots this as a

function of t with mode estimates. On average, the expected gap length is about 5 amino
acid residues for t in the range [1, 120], and, barring a few outliers at t = [43, 44, 45, 91, 94],
the trend is flat. Examining the structural alignments of these outliers in the dataset, we
find protein domain pairs with circularly permuted amino acid sequences and other pairs with
plastic deformations in their structures. Note that a circular permutation between proteins
results in a non-sequential relationship. Enforcing a sequence alignment on such a relationship
yields regions that cannot be sequentially-aligned, which are then misinterpreted as long gaps.
Similarly, domain pairs with plastic deformations have the same effect on gap lengths.

Further, in the range of t ∈ [120, 350], we observe that the expected gap length increases
linearly, as a function of t. Subsequently, for t > 350, the gap length again shows a flat trend
line, averaging on about 13 to 15 residues. The linear trend contradicts the observations of
Benner et al. (1993) that the expected gap length decreases with an increase in PAM time.

In summary, with these evolutionary-time-parameterised Dirichlet models, we are now able to
improve the MML protein alignment framework introduced in Chapter 1, for generating more
realistic sequence alignments. As described in §4.1.1, these models can either be used as

• priors for the MML87 method (Equation 3.25) of estimating the state machine parameters
~Θ for a given alignment string (Approach 1), or,

• to obtain their expected values (e.g. mean vector or mode vector) for their direct usage

as ~Θ parameters (Approach 2)

Approach 1 requires the statement of ~Θ within the message itself (Equation 4.5), yielding

I(~Θ) bits for the first part of the message in Equation 4.1. On the other hand, Approach 2
is more efficient since the time-parameterised Dirichlet models are part of the codebook and so
are their expected values. Thus, it is chosen for the subsequent experiments.
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5.4 Evaluation of the Improved Alignment Framework

over Benchmark Datasets

This section discusses an experiment conducted to evaluate the performance of the improved
MML protein alignment framework under Approach 2. Here, the mode vectors of the above
time-parameterised Dirichlet models were used to describe the state transition probabilities of
the three-state machine.

Two types of benchmark datasets were employed to test the performance of the MML protein
alignment framework under the derived mapping between the optimal PAM-t evolutionary time
and state machine parameters. The first is a set of experimentally verified remote orthologs
reported by Szklarczyk et al. (2012), containing a total of 877 protein sequence pairs spread over
two groups. The second is the entire twilight zone dataset from SABmark (Van Walle et al.,
2005) containing 10,250 protein sequence pairs spread over 209 groups. Results are presented
in Table 5.2 and Table 5.3.

Specifically, the dataset of Szklarczyk et al. (2012) includes, in the first group, 405 pairs
of human orthologous mitochondrial proteins found in Saccharomyces cerevisiae, and, in the
second group, 472 pairs of orthologs found in Schizosaccharomyces pombe. Their average per-
centage sequence identity is reported as 27.7%, with about 40% of this dataset having pairs of
< 25% sequence identity, and 36% having pairs of 25-35% sequence identity.

The MML framework was tested in terms of both the optimal alignment model and the
marginal probability model.

The optimal model (MMLOptimal) finds the best alignment hypothesis that minimises the
total message length given by the Equation 4.1, yielding the I(A∗, 〈S,T〉) statistic for each
pair of proteins in the dataset. This is together with the information measure of the alignment
complexity (I(A∗)), and the information measure of fidelity of the alignment to explain the
corresponding sequence data using its specified relationship (I(〈S,T〉|A∗).

The marginal probability model (MMLMarginal) estimates the negative logarithm of the marginal
probability as per the Equation 4.10, that gives the IMarginal(〈S,T〉) statistic. Both I(A∗,〈S,T〉)
and IMarginal(〈S,T〉) are compared with their corresponding INULL(〈S,T〉) null model message
length, yielding the bits of ‘compression’ statistic.

Further, the results of these MML alignment models were compared against seven widely-
used protein sequence alignment programs: ClustalW (Larkin, 2007), CONTRAlign (Do et al.,
2006), KAlign (Lassmann and Sonnhammer, 2005), MAFFT (Katoh and Standley, 2013), MUS-
CLE (Edgar, 2004), ProbCons (Do et al., 2005), and T-COFFEE (Notredame et al., 2000). The
performance across all these programs was evaluated using the ‘Compression’ statistic against
the null model. For each alignment produced by one of the programs, its I(A∗,〈S,T〉) value
was computed by finding the best parameters that minimises the value. We consider as ‘hits’
(i.e. correctly identified as related) only those alignments that give a positive compression.
This allows us to compute the percentage of the total number of sequence pairs that passes the
null hypothesis test for significance (%-Hits).

Table 5.2 presents the results across the benchmark of human remote orthologs (Szklarczyk
et al., 2012). It reports the corresponding median values (across the entire group) against I(A∗),
I(〈S,T〉|A∗), and ‘Compression’ entries. The MMLMarginal model has the highest percentage of
hits, (94.57% and 94.49% across the two groups, respectively). This is followed by MMLOptimal

to identify the best alignment hypothesis (79.26% and 80.51%). The next best couple are
MUSCLE and KAlign (both 73.83% hits in the first group; 76.06% and 74.79% hits, respectively
in the second group).
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Table 5.3: Comparison of various alignment programs over the 10, 250 twilight zone pairs from
SABmark (Van Walle et al., 2005)

Program %-Hits

ClustalW 1.7951
CONTRAlign 2.3512
KAlign 2.4878
MAFFT 1.8187
MUSCLE 2.4976
ProbCons 1.6683
TCoffee 1.6390
MMLOptimal 4.1399
MMLMarginal 34.9951

Figure 5.7 presents a visualisation of the marginal probability landscapes for some selected
ortholog proteins between humans and yeast, listed in the fungal mitochondrial remote ortholog
dataset.

Table 5.3 provides the performance over the challenging twilight zone benchmark. This is a
difficult dataset for most programs, especially for those that rely on reporting a single optimal
alignment. As it can be seen, methods that rely on finding the best alignment under their
respective criteria fare far worse than the MML protein alignment model that estimates the
marginal probability of the evolutionary relationship between two sequences, and ascertains its
statistical significance with the null model. MMLMarginal alignment model is able to identify a
substantially greater number of hits (34.9%). A distant second is the MMLOptimal model (4.1%),
followed by MUSCLE (2.5%).

The insights and results presented here establish the ability of the MML protein align-
ment framework to answer the question “Are two proteins related? If so, how exactly are they
related?”. They signify the benefit of quantifying the amino acid substitutions and gaps in
concert when aligning two protein sequences. Chapter 6 extends these insights through an
improved substitution modelling approach. While this section concludes the main contribu-
tion of this chapter, the next section explores a future utility of the MML estimation method
(discussed in §5.3) used to derive the evolutionary-time-parameterised Dirichlet distributions.

5.5 Optimal Binning of the Evolutionary Time Parame-

ter: A Future Direction

Previously, Dirichlet models were inferred for each integer time t in the range of discrete evo-
lutionary time [1, tmax]. However, it is interesting to explore if there exists a partition of this
time parameter range such that, all alignments in some bin (i, j] of that range can be optimally
explained using a single set of 1-simplex and 2-simplex Dirichlet models, rather than having
a separate set of Dirichlet models for each discrete time t ∈ (i, j]. In other words, each bin
explains a reasonable, average representation of the three-state machine in terms of 1-simplex
and 2-simplex Dirichlet models for all discrete time points within that bin. This problem can
be simply formulated as a one-dimensional Dynamic Program described below.
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Figure 5.7: A gallery of marginal probability landscapes inferred for nine different human versus
yeast ortholog pairs: COX24, PET100, COA3, PET117, COA1,MSS51, PET191, COX23 and
YMR244C-A, from the fungal mitochondrial remote ortholog dataset by Szklarczyk et al. (2012)
(Note: compr refers to the compression gain of the MML marginal probability model in bits,
with respect to the null-model. Average PAM indicates the optimal evolutionary time t inferred
when integrating all possible alignments)

5.5.1 Binning Problem

Given any ordered set (1, 2, . . . , N), a partition involving k non-overlapping bins/cuts defines
a set of indices j1, j2, . . . , jk−1 such that 0 < j1 < j2 < · · · < jk−1 < N . These indices define
k bins of the form (0, j1], (j1, j2], (j2, j3], . . . , (jk−1, N ]. Thus, there are

(
N−1
k

)
possible ways to

partition the set with exactly k bins/cuts. The minimum number and the maximum number of
possible cuts are 0 and N − 1, respectively. Thus, there are

∑N−1
k=0

(
N−1
k

)
= 2N−1 total number

of possible ways to bin the ordered set (1, 2, . . . , N).

In the context of this thesis, all discrete points in an evolutionary time range [1, N ] form
the ordered set of integers. The aim is to partition this range such that, the associated total
message length for modelling this time-binning is minimised.
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The structure of the optimal solution to this binning problem has an optimal substructure
and overlapping sub-problems, enabling the application of Dynamic Programming (Bellman
et al., 1954). This problem first requires the evaluation of costs of all feasible bin ranges. Let
Cost(i, j) store the message lengths of explaining alignments whose inferred time parameters are
in the range (i, j] (i.e. bin). The optimal substructure of the one-dimensional dynamic program
ensures that, the optimal partition up to j can be constructed from the optimal partition up
to some i (where i < j), by adding to it the Cost(i, j).

0 i j N

Let Hist(j) represent an one-dimensional array storing the solutions of the optimal partition
for each 1 ≤ j ≤ N . Initialise Hist(0) = 0 denoting the trivial optimal solution of an empty
N = 0 subproblem. Solutions of the growing optimal subproblem can then be computed using
the following DP recurrence:

Hist(j) = min
∀0≤i<j

{
Hist(i) + Cost(i, j)

}
The array Hist is progressively filled until j = N . Associated with Hist, another array B is
maintained, where each B(j) stores the optimal choice of 0 ≤ i < j for each j. Tracing back
using B gives the cut points of the optimal partition of (0, N ].

5.5.2 Cost Function for a Bin

Let b denote a bin which represents the range b = (l, u] in the evolutionary time range [1, tmax].
The bin b has an associated set of three-state alignment strings Ab. As previously discussed
in §5.2.2, Dirichlet models for state m and i (≡ d) over some alignment dataset A are inferred
independently using the objective function Equation 5.3. Accordingly, we can derive optimal
Dirichlet models, Dirm(~αm) and Diri(~αi), over the dataset Ab. The entire bin of alignments Ab

can then be communicated using the inferred models jointly, with a total message length:

I(~αm,~αi, ~Θ,Ab) = I(~αm) + I(~αi) + I(~Θ(m)|~αm) + I(~Θ(i)|~αi)︸ ︷︷ ︸
First part

+ I(Ab(m)|~Θ(m), ~αm) + I(Ab(i)|~Θ(i), ~αi) +
∑
∀A∈A

[
I(|A|)− log

(
1

3

)]
︸ ︷︷ ︸

Second part

bits

Accordingly, cost of some bin (i, j] can be computed and stored in a Cost matrix cell (i, j).
Algorithm in Figure 5.8 presents the pseudocode of the one-dimensional Dynamic Programming
algorithm for optimal binning of the evolutionary time parameter.

Alternatively, we can also define a full communication of all protein pairs D for which A have
defined alignment hypotheses. Each protein sequence pair 〈Si,Ti〉∈ D can be encoded according
to the alignment model discussed in §4.1.1. Recall that, this also requires the statement of the
optimal evolutionary time t that determines which amino acid substitution matrix to be used.
Since the dataset of the bin represents a range of evolutionary time points, one option is to use
b l+u

2
c (i.e. the mid time-point of the bin: tmid) for this purpose. tmid can be encoded over the

uniform probability of 1
tmax

. Accordingly, the total message length now becomes:

I(~αm,~αi, ~Θ,Ab, D) = I(tmid) + I(~αm,~αi, ~Θ,Ab) + I(D|~αm,~αi, ~Θ,Ab) bits (5.6)
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Data: Cost matrix
Result: Optimal bin cuts
N ← 1000;
Init Hist[0 . . . N ] = 0;
Init B[0 . . . N ] = 0;
for j = 1 to j = N do

min val← +∞ ; min cut index← -1;
for i← 0 to (j − 1) do

val← Hist[i] + Cost(i, j);
if val ≤ min val then

min val← val;
min cut index← i;

end

end
Hist(j)← min val;
B(j)← min cut index;

end

Figure 5.8: Pseudocode for the optimal binning of evolutionary time range [1, tmax]

This concludes the optimal binning of the evolutionary time parameter (based on a three-
state alignment string distribution). It provides us with a new way of modelling the en-
coding length of the time parameter.

BC
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Chapter 6

Modelling Amino Acid Substitutions

“If you torture the data enough, nature will always confess”

– Ronald Harry Coase

In the preceding chapters, the Minimum Message Length (MML) protein alignment frame-
work relied on a previously published Markov model of amino acid substitution, namely the
PAM model. This chapter completes the inference of the set of statistical models needed for
sequence alignment using MML, by inferring a time-parameterised Markov matrix of amino
acid substitution from any given alignment benchmark. Specifically, six structural alignment
benchmarks (that have been curated using various structural alignment methods) are used to
derive an optimal Markov matrix for each of them. Additionally, it allows us to examine nine
well-known substitution matrices on those benchmarks; any matrix that does not explicitly
model a time-dependent Markov process is converted to a corresponding (base) Markov matrix
that does. All fifteen matrices (9 previous and 6 new) are compared by measuring the Shannon
information content they yield in explaining each benchmark. Finally, this culminates in a
new and overall best performed stochastic matrix, MMLSUM, and its associated three-state
machine, whose properties are extensively analysed here.

This chapter describes the material appearing in the following manuscript (which
is under communication at the time of writing this thesis):
Sumanaweera, D., Allison, L. and Konagurthu, A.S., 2020. Bridging the Gaps in Statistical
Models of Protein Alignment. arXiv preprint arXiv:2010.00855.
URL: https://arxiv.org/abs/2010.00855

6.1 General Approach of Substitution Modelling

Extant proteins have evolved from ancestral proteins over millions of years. A protein’s history
is not explicit from currently observed protein sequences (Marsh and Teichmann, 2010). An
important step in inferring shared relationships between them is to model how one amino acid
at any position in some sequence gets substituted by another, as they evolve over a period of
time. This forms the basis of amino acid substitution matrices.

91
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The section here introduces the key elements of a typical substitution scoring matrix, com-
plementing what was previously discussed in §2.2.1. It is followed by an overview of history
into amino acid substitution modelling and the approaches used to derive scoring matrices.

As discussed in §2.4.1, generating any pairwise sequence alignment between two proteins
relies on a fixed 20 × 20 substitution matrix, to quantify their relationship in terms of amino
acid matches. In traditional substitution scoring matrices, typically, each element corresponds
to a unique amino acid pair, conveying a (scaled log-odds) score which reflects their degree of
interchangeability. That is, each cell S(i, j) allocates a score to an amino acid pair 〈ai, aj〉 based
on the log-odds ratio of their probability of being related (Pr(aj) Pr(ai|aj) ≡ Pr(ai) Pr(aj|ai))
to their probability of being unrelated (Pr(ai).Pr(aj)):

S(i, j) = c · log2

(
Pr(aj)Pr(ai|aj)
Pr(ai)Pr(aj)

)
= c · log2

(
Pr(ai|aj)

Pr(ai)

)
≡ c · log2

(
Pr(aj|ai)
Pr(aj)

)
(6.1)

where c is the scaling factor to set the unit of information (e.g. c = 2 implies half-bit unit; c = 3
implies one-third-bit unit). The choice of c is arbitrary. It is used to ensure that these scores
are within a range of integer values when rounded. Nearly all alignment programs employ
log-odds scores of substitutions to perform an alignment. Implicitly, the matrix also exhibits
(1) an expected change between any amino acid pair (reflecting the average evolutionary time
it represents), and (2) a background probability distribution for amino acids.

Any log-odds substitution scoring matrix can be converted into its corresponding conditional
probability and joint probability forms, using the constant c and independent (null) probabilities
of amino acids: Pr(ai) and Pr(aj). Note, a conditional probability matrix of substitutions is
asymmetric, whereas the joint probability matrix is symmetric.

Deriving these matrices to model amino acid substitutions is often carried out via enumer-
ating observed substitutions within homologous protein sequences. The pioneering work of
Dayhoff et al. (1978) introduced a Markov model of substitutions. Since then, many efforts
over the past four decades have been aimed at improving these models by leveraging the growth
of sequence databases. Their progress is outlined below.

6.1.1 A Brief History

The edit distance between corresponding codons of amino acids was the first basis for scoring
matches (Fitch, 1966; Feng et al., 1985; Dayhoff et al., 1978). However this was soon realised
to be ineffective at finding distant relationships, since it does not capture amino acid properties
well (McLachlan, 1971; Tomii and Kanehisa, 1996). Concurrently, scoring matrices based on
physicochemical characteristics arose, affirming atomic composition, polarity, molecular volume
and hydrophobicity to correlate well with substitutions (Grantham, 1974; Miyata et al., 1979;
George et al., 1990). Better models (both Markov and non-Markov) appeared when protein se-
quences with known homology became a reliable data source for learning substitution patterns
(McLachlan, 1971; Dayhoff et al., 1978; Jones et al., 1992a; Gonnet et al., 1992; Henikoff and
Henikoff, 1992; Gonnet and Korostensky, 1999; Kosiol and Goldman, 2005; Huang, 2008; Keul
et al., 2017). Early consideration was given to substitution counts (frequencies) amongst closely
related proteins. Later on, the inclusion of distantly related proteins and the evolutionary time
between sequences became prominent. Shortly, the importance of bringing in the evolution-
ary conservation of protein structural elements to the substitution modelling process was also
acknowledged. This resulted in more matrices based on aspects such as secondary structure
context, structural superposition and alignments, pairwise amino acid contacts, surface expo-
sure, torsion angle distributions and potential energy based structural stability (Levin et al.,
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1986; Rao, 1987; Risler et al., 1988; Niefind and Schomburg, 1991; Lüthy et al., 1991; Kolaskar
and Kulkarni-Kale, 1992; Johnson and Overington, 1993; Miyazawa and Jernigan, 1993; Rice
and Eisenberg, 1997; Russell et al., 1997; Dosztanyi and Torda, 2001; Qian and Goldstein, 2002;
Qiu and Elber, 2006; Tan et al., 2006; Farheen et al., 2017). Recently, many have explored
substitution parameter optimisation approaches (sometimes alongside gap parameter optimi-
sation) rather than depending on observed substitution counts alone (Levin et al., 1986; Kann
et al., 2000; Müller and Vingron, 2000; Whelan and Goldman, 2001; Müller et al., 2002; Qian
and Goldstein, 2002; Holmes and Rubin, 2002; Hourai et al., 2004; Saigo et al., 2006; Le and
Gascuel, 2008; Yamada and Tomii, 2013; Herman et al., 2015). The general approach is to
optimise the matrix over a predefined performance criterion such as homology classification,
secondary structure prediction accuracy, or tertiary structure similarity. Some have also em-
phasised the importance of adjusting prevailing scoring matrices to suit sequences with biased
amino acid compositions (Yu et al., 2003; Yu and Altschul, 2004).

General purpose amino acid substitution matrices are often viewed as widely useful, well
performing and robust (Keane et al., 2006; Le and Gascuel, 2008; Kosiol and Goldman, 2011).
However, most of them are learned over mammalian proteins; other unique contexts such as
viral proteins may require more specific models (Nickle et al., 2007). Thus there exists various
studies on protein-family or species-specific matrices as well (Adachi and Hasegawa, 1996;
Adachi et al., 2000; Ng et al., 2000; Müller et al., 2001; Dang et al., 2010). Nevertheless, Keane
et al. (2006) concludes that the decision on a substitution matrix should not be based on its
source or construction method. Some also advocate ensemble models, arguing that different
models could be applicable to different sequence pairs instead of a single, fixed substitution
model (Huelsenbeck et al., 2008).

6.1.2 Existing Markov Models of Substitution

The first and the most notable effort of amino acid substitution modelling was made by Dayhoff
et al. (1978) via the PAM (Point Accepted Mutation) series of matrices. Underlying the PAM
is a discrete Markov model. It was estimated using a set of phylogenetic trees constructed on
proteins from 71 closely related families, with at least 85% identity between the amino acid
sequences. It was the first work to propose the PAM (time) unit, defined as the state of a
Markov matrix showing a 1% expected change in amino acids. (This is also referred to as the
PAM-1 matrix). Accordingly, the substitution matrix for an evolutionary time parameter t is
given by the matrix PAM-t, computed as the tth power of PAM-1. Improved versions (such
as the JTT matrix (Jones et al., 1992a) and several more (Gonnet et al., 1992; Gonnet and
Korostensky, 1999; Kosiol and Goldman, 2005)) were also published later on. One pragmatic
argument commonly made against PAM is that, its construction was done using a limited set of
(then) available protein sequences. Later models focused on rectifying this. Separately, based
on PAM, Altschul (1993) introduced a substitution scoring scheme called the ‘All-PAM scoring
system’ which is sensitive to all detectable evolutionary distances of time.

Other directions of Markov model estimation include Bayesian approaches, methods for
deriving models from a non-Markov series, and also the ways of capturing codon level bias
and protein-level selective constraints together (Yang et al., 1998; Devauchelle et al., 2001;
Veerassamy et al., 2003; Arvestad, 2006; Kosiol and Goldman, 2011; Ndhlovu et al., 2015). As
for the family of continuous-time Markov models, VT (Müller and Vingron, 2000) and VTML
(Müller et al., 2002) matrices were resulted from an approach called ‘matrix resolvent method’
and a Maximum Likelihood (ML) method over sequence alignments. The WAG matrix (Whelan
and Goldman, 2001) is another model that employs an ML approach over inferred phylogenetic
trees on globular protein sequence families. Le and Gascuel (2008) presented the LG model as
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an improvement on WAG, covering a larger and more diverse set of protein family alignments
while also considering rate variation across sites. Holmes and Rubin (2002) came up with an
ML based Expectation-Maximisation (EM) algorithm for inferring substitution rate matrices
from multiple sequence alignments, generalisable to derive matrices for varying sites/structural
contexts. Despite claims that amino acid sequence evolution is non-Markovian (Bennet et al.,
1994; Kosiol and Goldman, 2011), a Markov model remains the widely-used form to describe
the amino acid substitution process during divergent evolution.

How the PAM (Point Accepted Mutation) Series was Derived

Dayhoff et al. (1978) published the PAM-1 stochastic matrix via the Atlas of Protein Sequence
and Structure in 1978. A point accepted mutation is an amino acid substitution which is
accepted by nature. This matrix hypothesises probabilities for all possible point accepted
mutations, defined for a period of evolutionary time where 1% expected change is seen (i.e.
PAM-1 unit of time, as mentioned previously). It was inferred over phylogenetic tree based
multiple alignments of 85% or more identical sequences from 71 families under 34 superfamilies,
imposing the following assumptions:

1. The dataset is sufficient in representing single, direct point mutations (without any un-
observed, intermediate mutations – E.g. A→ B is a single-step mutation, and there was
no A→ X → . . . Y → B for any X, Y )

2. The applied phylogenetic tree method infers reasonable common ancestral sequences and
a multiple sequence alignment

3. Mutations are site-independent

4. The transition rate of any amino acid type/position is a constant

Matrix construction goes as follows. A symmetric, raw substitution count matrix A is derived
using generated phylogenetic trees, by comparing observed sequences with their corresponding
(inferred) ancestral sequences. Each A(i, j) denotes the number of observed mutations between
amino acid i and amino acid j. This is symmetric since the direction of mutations is not taken
into account.

Next, they define the term relative mutability of an amino acid aj denoted by mj, as pro-
portional to the probability of aj changing during a small evolutionary time interval (i.e. one
PAM unit of time): Pr(aj → ∗). A simple estimate for mj is the proportion of changes from
aj to any other amino acid (∗), out of all aj occurrences. Dayhoff et al. (1978) computes a
weighted estimation for this over all phylogenetic trees, where a weight factor is defined as an
estimator of the exposure to evolution (i.e. the ratio between the total number of mutations
and the number of amino acids for a branch/pair) (Kosiol and Goldman, 2005). Following the
simple estimation, we have:

Pr(aj → ∗) = l ·mj = l ·
∑
∀i 6=j A(i, j)∑
∀iA(i, j)

where l is the constant rate parameter which acts as the proportional constant for mj to correct
for any possible, yet unknown indirect mutations within observed substitutions.

Further, the relative frequency of an amino acid j (denoted by fj) is defined as its probability
of occurrence. Again, a simple estimate of the proportion of the amino acid aj over all amino
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acids can be taken for fj:

Pr(aj) =

∑
∀iA(i, j)∑
∀x,y A(x, y)

This is again a weighted estimate by Dayhoff et al. (1978).
Finally, the product rule is applied to compute the mutation probability of an amino acid

aj changing into an amino acid ai (i 6= j):

Pr(aj → ai) = Pr(aj → ∗) · Pr(aj → ai |aj → ∗)

= l ·mj

(
A(i, j)∑

∀x,y(x 6=y) A(x, y)

)

Accordingly, a 20 × 20 conditional probability matrix (also known as mutation probability
matrix) M can be filled with all non-diagonal elements computed as above. A diagonal element
M(j, j) is simply the probability of amino acid j remaining unchanged, and can be estimated
by (1− l.mj).

The rate constant l is derived such that the M matrix corresponds to 1% average substi-
tutions (0.01 expected change). Note that, the probability of observing a change in any amino
acid is given by the below weighted sum:

Pr(observing a change) =
∑
fj · l ·mj = 0.01

In that way, l is selected to realise one PAM unit of time.
The PAM-1 matrix M is represented as a left stochastic matrix where each column adds

up to 1. A cell M(i, j) gives the probability of an amino acid aj changing to an amino acid ai,
given 1% expected number of direct amino acid mutations at t = 1. Consequently, M t(i, j) cell
(i.e. in the PAM-t matrix) gives the same probabilities, yet over a Markov chain of (length) t
transitions from aj to ai. The properties of such a Markov model are discussed in §6.2. The
conditional probability matrix M t is converted into a scaled log-odds scoring matrix S, rounded
to the nearest integer as follows:

S(i, j) = round

(
10× log10

(
M t(i, j)

fi

))
George et al. (1990) have observed that, despite several shortcomings such as: (1) the

insufficiency of observed substitution data (i.e. due to having no observations for 35 amino
acid exchanges out of the 400 possibilities), (2) a bias towards soluble proteins, (3) the absence
of types such as membrane proteins at the time of publication, (4) unreliable ancestral sequence
inferences, (5) circular dependency on multiple sequence alignments, and (6) the assumption of
a constant rate of mutation, PAM (specifically PAM-250) is still widely used; mostly it comes
as a default choice in many sequence alignment tools.

6.1.3 Existing Non-Markov Models of Substitution

The widely-used BLOSUM (Henikoff and Henikoff, 1992) is the most notable in the domain
of non-Markov matrix series. Each matrix in the series was inferred over a set of multiple un-
gapped alignments of conserved regions in protein families from Henikoffs’ BLOCKS database
(Pietrokovski et al., 1996). BLOSUM-n is derived by enforcing a clustering threshold of n, en-
suring that the matrix represents amino acid substitutions only from protein pairs that have at
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most n% sequence identity. While BLOSUM remains widely-accepted for sequence alignment,
there are other attempts to improve the model further. For instance, Kann et al. (2000) took
BLOSUM-62 to be a starting point for an EM based numerical optimisation method, resulting
in a new matrix called OPTIMA. They optimised its performance based on an average confi-
dence measure of remote sequence homology detection with the affine gap penalty function. An
MCMC approach was employed by Herman et al. (2015) for maximising matrix likelihood over
multiple sequence alignments, using a Gamma prior on substitution counts based on BLOSUM-
62 values. Recently, a new matrix family called PFASUM (Keul et al., 2017) was obtained over
manually curated Pfam seed multiple sequence alignments using the same clustering technique
as BLOSUM, however not only taking the conserved regions but also the gap rich columns into
account. Separately, Yamada and Tomii (2013) explored a new line of thought through Prin-
cipal Component Analysis (PCA) of nine existing matrices (including several from BLOSUM
and VTML family), for sampling a new matrix called MIQS from the most sensitive region of
the corresponding PCA 3D subspace.

Amongst the structure based substitution models is a well-known matrix by Johnson and
Overington (1993), derived over a set of complete structural alignments by accounting not only
for the most similar portions but also for variable regions amongst protein structures. STROMA
matrix (Qian and Goldstein, 2002) has been inferred through an iterative optimisation of sub-
stitution scores and gap penalties together, over the structural similarity defined in terms of the
average Root-mean-square deviation (RMSD) values computed on a set of rigid-body super-
posed, distant proteins. Qian and Goldstein (2002) claim that the matrix is indifferent to any
gap parameter choice, mainly due to most gap penalty combinations resulting in low RMSD
values.

Nevertheless, despite the common presumption that structure gives more information on
amino acid substitutions, Russell et al. (1997) observed that their scoring matrix derived over
structural alignments was in fact closer to PAM-250 and BLOSUM-62.

Additionally, some have examined how stability and potential energy of a protein tertiary
structure relate to substitution propensities (Miyazawa and Jernigan, 1993; Dosztanyi and
Torda, 2001). The idea follows the fact that a physicochemically similar amino acid substitution
is unlikely to destabilise the native structure.

How the BLOSUM Series was Derived

BLOSUM (BLOck SUbstitution Matrix) (Henikoff and Henikoff, 1992) has been inferred over
the BLOCKS database (Pietrokovski et al., 1996). A block represents an ungapped, conserved
region across a set of related proteins, presented in the form of a multiple sequence alignment.
Henikoff and Henikoff (1992) utilised more than 2000 blocks obtained over hundreds of protein
families/groups. The matrix construction starts with preparing a table of amino acid pair
frequencies (counts) for each block.

Let some block be a set of X aligned sequences with length L, represented by a table where
each row corresponds to a sequence. The pair frequency table records column-wise counts for
each pair. For instance, if a column in alignment has 〈2N, 7A, 1S〉, there are 2C2 〈N,N〉 pairs,
7C2 〈A,A〉 pairs, 7×2 〈A,N〉 pairs, 1×2 〈S,N〉 pairs, and 7×1 〈A, S〉 pairs. The total number

of pairs from a column is X(X−1)
2

. As a result, the total number of pairs from the block is
LX(X−1)

2
. Next, all counts are summed up across all blocks, giving the symmetric, 20× 20 total

count matrix F . A frequency count fij of a pair 〈ai, aj〉 is normalised to compute its joint

probability of occurrence: qij =
fij∑
∀i,j fij

. Meanwhile, their expected probability of occurrence

eij of the pair is computed in terms of individual amino acid occurrence probabilities (pi and
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pj) as:

eij =

{
2pipj when i 6= j

pipj when i = j

Here, the pair is viewed as two positions representing a bidirectional substitution (thus
eij = pi.pj + pj.pi for i 6= j) unless it represents no substitution (i = j). The occurrence
probability pi of amino acid ai is computed as:

pi = qii +
∑
∀i 6=j

1

2
qij

Note: for an empty pair 〈 , 〉, the probability of ai occurrence in any of the two positions is:
Pr(Choosing the position for ai) · Pr(ai occurring jointly with aj).

With the above information, a scoring matrix S is formed by calculating the log odds ratio
between qij and eij as:

S(i, j) = round

(
2× log2

(
qij
eij

))
half bits

Following this method, Henikoff and Henikoff (1992) produced a series of matrices that repre-
sents different evolutionary times. Their approach was to cluster the sequences within a block
under a clustering percentage n such that, all sequence pairs considered for substitution mod-
elling within the block only represent sequence identity percentages less than n%. The resultant
is a BLOSUM-n matrix. This means, sequences that are at least n% identical are clustered
together and considered as a single, average sequence when taking their pair frequency count
contributions into account for preparing the count matrix. One approach to clustering is by
first appointing all sequences in the block as nodes of a fully connected graph (Durand, 2015).
Each edge has its weight taken to be the percentage identity between the corresponding pair.
Then, all edges with a weight less than n% are removed. The resultant connected components
are taken as clusters, thus averaging the pair counts across the clustered sequences.

6.2 Markov Model Properties

This section presents the associated mathematical descriptions and internal mechanics of Markov
models that enable a coherent representation of how sequences evolve with a notion of evolu-
tionary time. They are essential in building up the contributions of this chapter.

Amino acid substitutions are often explained in the form of a time homogeneous and re-
versible Markov chain (Stewart, 1994; Norris, 1998), where the finite state space is the set of
20 amino acid types. It assumes all substitutions to be generating from a memoryless state
transition process, with independent and identically distributed amino acid sites. This is also
an irreducible and aperiodic chain, since any state can be reached from any other state in finite
time, and with a period of 1.1 The description of the chain’s behaviour depends on whether
the time is treated as a discrete or continuous variable.

1A Markov chain is periodic if the number of single step transitions required for revisiting any state is a
multiple of an integer greater than 1 (Stewart, 1994).
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6.2.1 Discrete Time Markov Chain

In a Discrete Time Markov Chain (DTMC), states are observed in discrete time steps. Given
a discrete time step sequence {0, 1, 2, .., t} and a set of state observations {x0, x1, .., xt} at each
time step, the next state xt+1 at time t+ 1 depends only on the current state xt:

Pr(xt+1|x0, x1, . . . , xt) = Pr(xt+1|xt)
The conditional probability of the next state xt+1 given the current state xt corresponds to a
single step transition between the two states as observed after one discrete unit of time from
the current time t. The common standard in substitution modelling is to take this unit as the
time taken for observing a 1% expected change, originally proposed by Dayhoff et al. (1978)
with one PAM unit of time (as discussed in the previous section).

All 400 conditional probabilities are conveyed through a 20 × 20 base probability matrix
M (also known as a stochastic matrix or Markov matrix), where each cell Mij refers to the
probability of an amino acid aj changing to an amino acid ai in one unit of time (0 ≤ Mij ≤ 1
). Each column vector of this matrix is an L1-normalised, 20-state probability vector in a unit
19-simplex (

∑
∀j Mij = 1).

While M(1) = M is a base matrix which corresponds to all transitions occurring in t = 1
unit of time, let us define M(t) as the substitution probability matrix after t steps of time.
The time homogeneous property of the Markov chain ensures a transition matrix M that is
invariant of time. Therefore, M(t) can be obtained by raising the base matrix M(1) to the
power of t:

M(t) = (M(1))t

At t = 0, we expect no change in any amino acid state, informed by M(0) (i.e. the identity
matrix I). As time progresses, an amino acid position could stay in the same state for some
time (i.e. holding time) until a transition to a different state. Since the process is captured in
discrete time units, this holding time is geometrically distributed.

Another important property of an irreducible and aperiodic Markov chain is that, the fol-
lowing equation has a unique solution:

~π · M = ~π

where ~π = [π1, π2, ..., π20] is the 20-dimensional stationary distribution vector of the Markov
chain such that, Π = [~πT , ~πT , ..., ~πT ]20×20 = limt→∞M(t). The probability πi is the stationary
probability (i.e. equilibrium probability) of an amino acid ai. This property explains the
evolution of the Markov chain. As the system evolves, the conditional probabilities reach the
corresponding stationary probabilities, known as the equilibrium state.

Further, the system also satisfies the following equation (known as the detailed balance
equation):

πjMij(t) = πiMji(t) (6.2)

implying reversibility. This reflects the product rule form of the Bayes theorem (explained in
§3.1.2). Accordingly, the above value gives the joint probability of observing an amino acid
pair 〈ai, aj〉 as related.

6.2.2 Eigen Decomposition

Eigen decomposition of the stochastic matrix M enables an efficient computation of M(t).
Any diagonalisable, square matrix A of size n × n can be decomposed into a canonical form
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represented by its eigenvalues and eigenvectors. A scalar λ is an eigenvalue for A, if there exists
a non-zero vector ~u ∈ Rn that satisfies:

A~u = λ~u

=⇒ (A− λI)~u = ~0

Then, ~u is called an eigenvector of the matrix. This reflects the application of a linear trans-
formation described by A on ~u that merely scales ~u along its original direction by a factor
of λ. Finding the eigenvalues and the respective eigenvectors of A involves solving the below
characteristic polynomial:

|A− λI| = 0

resulting in n number of eigenvalues (represented by the diagonal matrix Λ) and their cor-
responding eigenvectors (represented by the matrix of column eigenvectors U). The eigen
decomposition theorem states that the matrix A can be decomposed as:

A = UΛU−1

Applying this insight to M(t) = (M(1))t, we get:

M(t) =
(
SΛS−1

)t
= SΛtS−1 (6.3)

where S and Λ are the eigenvector and (diagonal) eigenvalue matrices of M(1) .

The spectrum of the stochastic matrix (i.e. the set of all eigenvalues {λ1, λ2, ..., λ20} in
their descending order) is real and positive valued. The largest eigenvalue (λmax = λ1) is
1. (This is also known as the Perron-Frobenius eigenvalue – every other λi < λmax ). The
eigenvector associated with λmax corresponds to the stationary distribution. The matrix rate
of convergence to the equilibrium state is controlled by the difference between λmax and λ2

(i.e. spectral gap) as t → ∞ asymptotically (Berestycki, 2016). The time taken to reach
the stationary distribution is referred to as the mixing time. The Perron-Frobenius theorem
(Perron, 1907; Frobenius et al., 1912) explains how the distance to equilibrium state decays
exponentially for irreducible finite Markov chains (Hough, 2003; Berestycki, 2016). The mixing
time is inversely proportional to the spectral gap. This can be intuitively reasoned without
going into a formal mathematical proof. When exponentiating the matrix to a higher power
(order), the eigenvalues get exponentiated each time (according to the decomposition given in
Equation 6.3). At equilibrium, all eigenvalues have reached 0 except for λmax which remains
a constant. This means, all eigenvalues except for λmax control the convergence of the matrix.
The most restricting eigenvalue is the second largest (λ2). If it is very close to 1, it takes more
time to reach 0. See Figure 6.1 for an example illustration.

Stationary Distribution of a Transition Probability Matrix

Let A be an n× n stochastic matrix with an eigenvector matrix U = {u1, u2, . . . , un}, and
eigenvalues {λmax = λ1, λ2, . . . , λn} in their decreasing order. Since U forms a basis for Rn, any
vector ~x ∈ Rn (with

∑n
i=1 xi = 1) can be represented as a linear combination of the eigenvectors

in U:

~x = a1 ~u1 + a2 ~u2 + ...+ an ~un
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Figure 6.1: How the eigen spectrum of PAM (Dayhoff et al., 1978) transition probability matrix
M(t) varies with matrix power t. Note that the largest eigenvalue λmax remains 1, while others
reach 0. The second largest eigenvalue (λ2) takes the longest time to reach 0.

Considering the transformation A applied to ~x,

A~x = a1A~u1 + a2A~u2 + ...+ anA ~un

= a1λ1 ~u1 + a2λ2 ~u2 + ...+ anλn ~un

(∵ ∀i, Aui = λiui as described in 6.2.2). This transformation is equivalent to computing the
marginal probability vector over a state space Ω after one step transition, given a prior proba-
bility vector ~x and a conditional probability matrix A. For instance, the marginal probability
of any state Xi ∈ Ω after a single-step state transition is:

Pr(Xi after one step transition) =
∑
∀Yj∈Ω

Pr(Xi|Yj)Pr(Yj)

To compute the marginal probability vector ~xt after t steps of transition, we can apply A
transformation on ~x iteratively for t times, yielding, ~x1 = A~x, ~x2 = A~x1, ~x3 = A~x2 all the way
up to ~xt = A~xt−1. Ultimately, ~xt = At~x. Let us now consider the transformation At applied to
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~x:

At~x = a1A
t ~u1 + a2A

t ~u2 + ...+ anA
t ~un

= a1A
t−1A~u1 + a2A

t−1A~u2 + ...+ anA
t−1A ~un

= a1A
t−1λ1 ~u1 + a2A

t−1λ2 ~u2 + ...+ anA
t−1λn ~un

= a1λ1A
t−2A~u1 + a2λ2A

t−2A~u2 + ...+ anλnA
t−2A ~un

... continued for t times

=⇒ At~x = a1λ
t
1 ~u1 + a2λ

t
2 ~u2 + ...+ anλ

t
n ~un

When t→∞, all λi < 1 involved terms in the above expression goes to 0, while the λmax = 1
term remains the same. Accordingly, At~x approaches a1 ~u1 (known as the steady state). This
is the stationary distribution of the Markov model.

6.2.3 Continuous Time Markov Chain

Continuous Time Markov Chain (CTMC) generalises DTMC to real-valued time. A transition
from state j to state i is now considered as occurring in some infinitesimal ∆t time instead of
one unit of time. The holding time is no longer discrete, hence exponentially distributed. A
constant, 20 × 20 instantaneous rate matrix Q describes how the probability matrix changes
with time, arising from the following derivation.

Denote the probability of a state change after an instantaneous time ∆t as M(∆t). The
probability matrix at a certain time t depends on the rate at which it changes:

d

dt
M(t) = lim

∆t→0

M(t+ ∆t) − M(t)

∆t

This is further simplified using the Chapman-Kolmogorov forward and backward equations
which provide for any time s and t, M(s + t) = M(s) ·M(t) = M(t) ·M(s). Accordingly,
M(t+ ∆t) = M(t) ·M(∆t), resulting in:

d

dt
M(t) = M(t) lim

∆t→0

M(∆t) − M(0)

∆t︸ ︷︷ ︸
Q

= M(t) .Q

Each cell (i, j) in Q refers to the rate at which an amino acid aj changes to an amino acid
ai. Further simplification gives the following relationship between M(t) and Q:∫

1

M(t)
d M(t) =

∫
Q dt

=⇒ log ( M(t) ) = Qt

This results in the below important equation.

M(t) = eQt (6.4)

If we consider a process capture from t = 0 to t = ∆t, M(∆t) is given by eQ∆t. By expanding
this relation via the Maclaurin series and taking the first order approximation, we get:
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M(∆t) = I +
∞∑
k=1

(Q∆t)k

k!
= I + Q∆t + O(∆t)

This relation informs the state transition probability values at t = ∆t. Altogether, Q obtains
the following form. Let Qij denote a cell (i, j) in Q that gives the transition rate between any
two states, ai and aj. Then,

Qij ≥ 0 and Qjj = −
∑
∀i 6=j

Qij

Each column of this rate matrix adds upto 0. The system still reaches the stationary distribution
~π as it evolves, and it is the unique solution to the equation ~πQ = ~0. Also the detailed balance
equation is satisfied as πiQji = πjQij (holding reversibility). This also gives rise to a symmetric

exchangeability matrix E where Eij =
Qij

πi
=

Qji

πj
, resulting in:

Q = E Π (6.5)

where Π is the diagonal matrix with values in ~π along the diagonal (Whelan and Goldman,
2001).

Overall, the CTMC process is described using the instantaneous rate matrix rather than
the base stochastic matrix that refers to 1 unit of time. The relationship between the stochastic
matrix M and rate matrix Q is straightforward due to Equation 6.4, enabling a two-way con-
version between them given the knowledge of time t (Kishino et al., 1990; Kosiol and Goldman,
2005). Following the eigen decomposition

Q = U


λ1 φ

λ2

.
φ λ20

U−1

where U is the eigenvector matrix, a direct relationship

M(t) = U


eλ1t φ

eλ2t

.
φ eλ20t

U−1

exists according to the Equation 6.4, that supports an instantaneous rate matrix Q for any
stochastic matrix M(t) with a valid logarithm. CTMC rate matrix estimation for amino acid
substitution is not trivial due to the difficulty in finding sequence relationships that truly
reflect an infinitesimal amount of time. Any DTMC model such as PAM also implicitly carries
a rate matrix that defines its CTMC version. Kosiol and Goldman (2005) explored rate matrix
derivation for PAM when t approaches 0 upto the numerical limits in modern day systems.

Expected Change of a Markov Matrix

The expected change of a stochastic matrix is defined as the probability of observing a change
in any state (on average). Since the matrix diagonal represents all self-state transitions, the
probability of no observed change in any state on average can be computed over the diagonal,
and be used to compute the opposite event. Accordingly, for any substitution probability
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matrix M(t):

Expected change = 1.0−
∑
∀j

πjMjj(t)

In contrast, the instantaneous rate of change of some state j is given by −Q(j, j). Accordingly,
the expected rate of change is calculated as:

Expected rate of change = −
∑
∀j

πjQjj

6.2.4 Converting a Non-Markov Matrix into a Markov Matrix

A non-Markov substitution model represents a random process of amino acid substitutions
which does not adhere to the Markov property nor represent protein sequence evolution as
a Markov chain of events. Such model either gives a single substitution matrix or a series of
evolutionary-time-parameterised matrices that have been estimated independently (§6.1.3 gives
an overview to the existing matrices/series as such).

Given a set of Markov substitution models and non-Markov substitution models, an ap-
proach of establishing a common ground for a fair and consistent comparison between them
is by converting the non-Markov models into Markov models. Not many have attempted to
convert a non-Markov amino acid substitution model into a Markov substitution model. A
notable effort is made by Veerassamy et al. (2003) who presented an approximation of sub-
stitution probabilities in the BLOSUM series as a function of PAM evolutionary time. Their
objective was to arrive at a Markov model of evolution which is compatible with BLOSUM.

In this thesis, any given non-Markov substitution matrix is converted into a Markov form
by following the simple properties of Markov models discussed in the previous section. This
facilitates a consistent comparative analysis between existing substitution models by bringing
all those matrices into the context of a DTMC. Below lists the steps followed for this conversion.

Steps for Conversion

In the context of this thesis, all non-Markov models go through the following steps 1-3.

1. Convert a published, log odds scoring matrix into its conditional probability form using
the Equation 6.1. (Note: In case the original amino acid frequencies are absent, use a
null probability model which is optimal under the experimental setting of this thesis, in
order to compute the denominator (i.e. the unrelated probability term) of the log odds
ratio in the equation – in that way, it will be treated in the fairest way possible).

2. If the derived substitution probability matrix does not reflect a 1% expected change,
assume it as representing some M(t) of a Markov model and derive its approximate base
matrix M̃(1) by finding the kth matrix root which is the closest to 1% expected change.

3. Scale the resultant base matrix with a current expected change curr to possess a 1%
expected change, under the assumption that evolutionary time t is linear to the expected
change within a small interval t± δt.

M(1) = M̃(1)
0.01
curr
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Converting a non-Markov model into a Markov model through the aforementioned approach
enables its application under the MML protein alignment framework introduced in this thesis.
Since a pairwise alignment is always generated using the substitution matrix suited optimally
for the evolutionary time between the two proteins in comparison, the original non-Markov
matrix will anyway be applied if the pair depicts an expected change reflected by that particular
matrix.

6.2.5 Converting a Rate Matrix into a Markov Matrix

For a given mixture of Markov and non-Markov models, the above section grounded non-Markov
models in a DTMC context. Independently, for Markov models, if a substitution scoring matrix
is originally from a DTMC, only step 1 of the above listed conversion steps is required. On the
other hand, if the originally published version is a CTMC, the below steps are performed to
obtain the base conditional probability matrix that accounts for 1% expected change.

1. If an exchangeability matrix E has been published, retrieve the corresponding instan-
taneous rate matrix Q with the published amino acid frequencies as the ~π stationary
distribution, using the relationship defined in Equation 6.5 (Note: In case the original
amino acid frequencies are absent, use a null probability model which is optimal under
the experimental setting of this thesis)

2. If the originally published or the above derived rate matrix does not reflect a 1% expected
change, normalise the matrix by scaling each cell Q(i, j) as:

Q(i, j) =
Q(i, j)

curr× 100

3. Convert Q to M(1), by defining t = 1 via the Equation 6.4

Now that we have established the essential background on Markov models of amino acid
substitution, let us next go into the details on the essence of this chapter. The objective
is to infer an optimal Markov matrix given a benchmark set of protein alignments. The
next sections present an inference method followed by a thorough comparative analysis and
discussion on the properties of a selection of existing substitution models and a set of newly
inferred Markov models over several benchmarks.

6.3 MML based Substitution Matrix Inference

This section describes an MML based MCMC inference procedure to attain an optimal Markov
matrix of amino acid substitution over any given benchmark of protein alignments, taking both
matched and gapped regions between sequences into account.

6.3.1 Formulating the Problem in the MML Framework

Let D denote any benchmark dataset of aligned protein sequences. Formally, it is composed of
pairs of amino acid sequences and their given alignments:

D = {〈A1,S1,T1〉 , 〈A2,S2,T2〉 , . . . ,
〈
A|D|,S|D|,T|D|

〉
}
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where each protein sequence pair 〈Si,Ti〉 is assigned an alignment relationship Ai specified
as a three-state string over match(m), insert(i) and delete(d) states (Recall the three-state
machine illustrated in Figure 2.4 which generates such an alignment string). The objective is to
encode this observed dataset D losslessly and efficiently. Below lists the key statistical models
required for this purpose.

A Markov matrix M: This is an amino acid substitution matrix which is used to losslessly
encode the corresponding pairs of amino acids in each sequence pair 〈Si,Ti〉 that are under m

states in Ai. Recall §4.1.1 that discusses this encoding in detail. Here, we apply the stationary
distribution of M as the null model probabilities of amino acids, such that the joint probability
of an amino acid pair is computed as per the detailed balance in Equation 6.2. (Note: M can
be either an existing substitution matrix prepared using the steps listed in §6.2.4 and §6.2.5,
or optimally inferred under the MML criterion as explained in §6.3.2).

A multistate model P: This is a 20-state model which gives null model probabilities of
the 20 amino acids. It is used to losslessly encode the amino acids in the unaligned regions of
〈Si,Ti〉 (i.e. under i and d states). Recall §4.4 on how to infer such null model estimates over a
collection of protein sequences. In this chapter, the estimates of P are optimally inferred from
amino acid subsequences that come under the insertion and deletion regions of the alignments
in D. Two other possible choices for P are: (1) the stationary distribution of the stochastic
matrix M, and (2) the estimates derived from a source independent of D (such as the UniProt
database (UniProt Consortium and others, 2017)).

The set of evolutionary time parameters τ : This contains the optimal evolutionary time
parameters τ = {t1, t2, ..., t|D|}, inferred for each sequence-pair in D. As already established
in this thesis during multiple instances, any ti captures the evolutionary divergence between
the corresponding sequence-pair 〈Si,Ti〉, interpreted as the number of steps of the Markov
chain by which their amino acids are related under the given Markov model M of amino acid
substitutions. Recall §4.1.1 and §4.1.2 that explain how this optimal time parameter is searched
for a given sequence alignment. The method applies a modified variant of the bisection search
over the integral values of t ∈ [1, tmax = 1000], where in each iteration, the interval is reduced
by half (i.e. the search range is halved). The variation attempts to handle some special cases to
avoid the method from being trapped within in a local minimum. Here tmax was chosen to be
1000 because, as pointed out in §6.2, a Markov matrix M(t) reaches its stationary distribution
when t→∞. Examining the convergence plots of the substitution matrices (see §6.5), t = 1000
seems to be in the range where any substitution matrix loses its differentiation ability. Thus it
is a practical choice.

A set of Dirichlet parameters α: This contains parameter vectors for 1-simplex and 2-
simplex Dirichlet distributions that explain the three free parameters (Pr(m|m), Pr(i|i) and
Pr(m|i) as highlighted in Figure 4.1) of the three-state machine as a function of evolutionary
time t. All mathematical details, estimation methods and insights related to these models are
detailed in Chapter 5. Each “evolutionary time” t value in the range [1, tmax = 1000] maps with
a distinct 1-simplex Dirichlet model and 2-simplex Dirichlet model. These Dirichlet models are
priors for inferring the three-state machine parameters of each alignment string in D using the
Equation 3.25 under the MML87 method.
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The set of three-state transition probabilities Θ: This contains a vector ~Θi comprising
the three free parameters Pr(m|m), Pr(i|i) and Pr(m|i) for any alignment string Ai in D. They
have been inferred using one of the suitable time-dependent (1-simplex and 2-simplex) Dirichlet
priors mentioned above, and are encoded using the same. They are in turn applied to losslessly
encode the three-state alignment string Ai.

The objective function

The task here is to compute the total encoding length of the message required for communicating
the benchmark D of protein alignments using the above described models. Adhering to the
MML Equation 3.10 of estimating the Shannon information content required for encoding some
observed data D and their hypotheses H jointly, we can define the current message length
formulation by the following summation of individual Shannon information terms:

I(H,D) = I(M) + I(P) + I(α) +

|D|∑
i=1

I(ti) + I(~Θi|α, ti) + I(Ai|~Θi, ti) + I(〈Si,Ti〉|Ai,M,P, ti)

(6.6)
where,

H: accounts for all model parameters used to explain D;
I(M): is the lossless encoding length of the base Markov matrix M1 related to

evolutionary time t = 1 (with 1% expected change);
I(P): is the statement length of the probability model P which gives null model

estimates of amino acids;
I(α): is the statement length of the set of time-dependent Dirichlet parameters α;
I(ti): is the statement length of the optimal evolutionary time ti inferred for a

sequence-pair 〈Si,Ti〉 given its alignment Ai;
I(~Θi|α, ti): is the statement length of the free parameter vector ~Θi of the three-state

alignment machine inferred for each Ai;
I(Ai|~Θi, ti): is the statement length of each three-state alignment string Ai;

I(〈Si,Ti〉|Ai,M,P, ti): is the statement length of explaining all amino acids in each sequence-pair
〈Si,Ti〉;

Computing the Shannon information terms of I(α), I(ti), I(~Θi|α, ti), I(Ai|~Θi, ti) and
I(〈Si,Ti〉|Ai,M,P, ti) appearing in the above objective function were detailed in the previous
Chapters 4 and 5. Following deals with the computation of I(M) and I(P) terms.

I(M): This is the message length of communicating the base stochastic matrix M(1) of the
Markov model as a set of twenty points in a unit 19-simplex (representing the 20 column vec-
tors). Each column vector ~vj is encoded by assuming a uniform prior h(~vj) = 19!√

20
. Accordingly,

the MML formulation of ~vj (as per the Equation 3.10) is given by:

I(~vj) =
19

2
log (c19)− log (h(~vj)) +

1

2
log

(
N19
j∏

∀p∈ ~vj p

)
bits

where Nj is the total count of amino acid transitions represented by ~vj in the benchmark
dataset, and c19 is the quantising lattice constant (Conway and Sloane, 1984) associated with
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19 free dimensions. Summing up the message lengths of all the 20 column vectors, we get:

I(M) =
20∑
j=1

I(~vj) bits

I(P): This is the message length of communicating the null model probabilities of amino acids
as a 20-state distribution for encoding amino acid insertions and deletions. It is again a point
in a unit 19-simplex. Thus, similar to the previous case of ~vj above, the MML formulation of
P under a uniform prior (as per the Equation 3.10) is given by:

I(P) =
19

2
log (c19)− log (h(~vj)) +

1

2
log

(
X19∏
∀p∈P p

)
bits

where X is the total number of insertions and deletions in the benchmark dataset, and c19 is
the quantising lattice constant (Conway and Sloane, 1984).

6.3.2 Search for the Best Markov Matrix of Amino Acid Substitu-
tion

Given the earlier defined MML objective function (Equation 6.6), we can now compute the
total encoding length of the message that communicates the complete protein alignment bench-
mark D. In other words, it gives the Shannon information content of D under the statistical
models/parameters: {M,P,α, τ ,Θ}. The primary goal is to optimise the Markov matrix M
of amino acid substitutions under this objective function. Since α Dirichlet parameters are
directly connected to M via the evolutionary time parameter t, we can employ an Expectation-
Maximisation (EM) like strategy for the simultaneous optimisation of M and α.

The EM-like search involves holding the α fixed (and consequently, the Θ fixed), while
performing a Markov Chain Monte Carlo (MCMC) search for the best, optimal matrix M
and its associated τ . Afterwards, M and τ are held fixed to estimate the optimal α (and
consequently, the Θ). This process is repeated until the objective function converges.

Search for the Best Stochastic Matrix M with Fixed {α,Θ}

While holding the Dirichlet and three-state machine parameters (α and Θ) fixed, the current
state of the stochastic (base t = 1) matrix is optimised over all set of sequence-pairs and their
alignments in the benchmark D using a Simulated Annealing (SA) approach (See §5.3.4 for the
preliminary discussion on SA).

Initially, the search starts with a reasonable stochastic matrix for M, and lets it undergo
an SA process. As noted by Qian and Goldstein (2002), the space of all possible substitution
matrices is complex, and thus, there is an inevitable chance that any inferred matrix is a local
optimum based on the starting point of the search. A good starting point would be an existing
and timely substitution matrix which has been prepared as a stochastic base (t = 1) matrix by
following the steps listed in §6.2.4. Similarly, α inferred from any of the earlier matrices is a
good starting point. Hence, for all practical purposes, it was decided to begin the optimisation
process with a Markov matrix prepared from the latest PFASUM-60 scoring matrix (which
comes under the non-Markov matrix series of PFASUM (Keul et al., 2017) – see §6.4.1 for
details). On the other hand, the initially fixed α is the 1-simplex and 2-simplex Dirichlet
models inferred as a function of PAM-t evolutionary time in Chapter 5.
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Simulated Annealing Setup: Starting from the above matrix as the initial system state
under an initial temperature parameter of T = 10, 000, we gradually cool down the system
using a cooling schedule. There, the temperature is decreased by a factor of 0.88 after 500
perturbations of the stochastic matrix (i.e. evolving a Markov chain of system states) at each
temperature mark. Each new Markov chain (that corresponds to a certain temperature) starts
with the best matrix achieved so far. The process continues until a temperature T = 0.0001.

Matrix Perturbation: At each iteration, the current matrix M is perturbed by randomly
selecting one of its column vectors to perturb. This random selection is made according to the
stationary distribution of the matrix. The selected column vector is perturbed by sampling
a new vector from a Dirichlet distribution Dir(~α = ~µκ), where ~µ is the selected column and
κ is a specified high concentration parameter κ (Note the reparameterisation given in §5.2.1).
This defines a 20-dimensional Dirichlet distribution explaining a unit 19-simplex. (Sampling a
vector from a Dirichlet distribution was previously described in §5.2.1 with a pseudocode given
in Figure 5.4). Initially, κ is set to 1, 000, 000. As the system cools down by a factor of 0.88 at
each temperature mark, the Dirichlet sampling distribution of a column vector is made even
more concentrated by increasing the κ by a factor of 1

0.88
. This makes the neighbourhood of

sampling tighter and tighter as the SA process continues and the matrix M converges. During
this perturbation step, the validity of the perturbed matrix is always ensured (i.e. the matrix
is properly normalised and has real eigenvalues).

For each perturbation of M → M̃, the total lossless encoding length as per the Equation
6.6 is recomputed using M̃. The new matrix is accepted or rejected based on the Metropolis
criterion. If the encoding length decreases, then the change is accepted with a probability of 1;
Otherwise, it is accepted with a probability of 2−

∆I
T , where ∆I is the difference in the encoding

lengths under M̃ versus M.

Search for the Time-dependent Dirichlet Parameters α with Fixed {M, τ}

Holding the stochastic matrix M and time parameters τ fixed, we can group all the alignments
in the benchmark D into their respective discrete bins of evolutionary time. This results in sub-
sets of alignments A(t) for each t ∈ [1, tmax = 1000]. The goal is to now estimate 1-simplex and
2-simplex Dirichlet models for each discrete time-bin over the respective three-state alignment
strings. Chapter 5 introduced the MML inference method for estimating these models with an
MCMC search for optimal Dirichlet parameters in §5.3.4. Accordingly, α is re-estimated to be
used in conjunction with the best substitution matrix M inferred in the previous step. Then,
a new Θ set is estimated under the updated τ as per the Equation 3.25.

The above detailed optimisation method arrived at an improved Markov matrix of amino acid
substitutions and its associated evolutionary-time-parameterised Dirichlet models over a struc-
tural alignment benchmark of 59, 092 SCOP protein domains pairs. The new substitution
model is named as the Minimum Message Length SUbstitution Matrix (MMLSUM). The
MML protein alignment framework introduced in Chapter 4 can now benefit from these im-
proved models of amino acid substitution and three-state alignment strings as a function of
evolutionary time. Figure 6.2 illustrates how the respective 1-simplex and 2-simplex Dirichlet
probability distributions vary as a function of evolutionary time t under the MMLSUM Markov
model. Furthermore, five other structural alignment benchmarks were employed to obtain five
more Markov substitution models, making the total number of inferred matrices as six including
the MMLSUM matrix.
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(a) 1-simplex Beta plots

(b) 2-simplex Dirichlet plots

Figure 6.2: Visualisation of the inferred Dirichlet distributions, modelling the three free param-
eters of the finite state machine. (a) 1-simplex distributions of Pr(m|m) associated with state m,
as a function of evolutionary time t ∈ [1, 600], and (b) 2-simplex distributions of Pr(i|i) and
Pr(m|i) associated with state i (and by symmetry, state d), as a function of evolutionary time
t = {1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 400, 600, 800, 1000}, under the new MML-
SUM substitution model. The yellow cross marker and black cross marker highlight the mode
and mean vectors, respectively.
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The next section conducts a comparative analysis of a collection of nine existing substitu-
tion matrices and those aforementioned six MML matrices. MMLSUM has the best overall
performance amongst all the matrices in comparison as shown in §6.4.3. An extended analysis
of this matrix reveals further insights regarding amino acid properties, protein function and
evolution in §6.5 and §6.5.4.

6.4 Comparative Analysis, Results and Insights

Here, this thesis presents a comparative study across nine existing substitution models, as well
as a new set of Markov models inferred over six different structural alignment benchmarks
(following the inference method described in §6.3). The existing matrices covered widely-used,
as well as recently published substitution models (both Markov and non-Markov) since the
pioneering work of Dayhoff et al. (1978). To conduct an impartial and consistent comparison,
all non-Markov matrices were brought down to their base form of 1% expected change, assuming
their original form as reflecting a discrete time point in a Markov model, as explained in §6.2.4.

The below section lists and details the existing matrices used in this study, following the
next section giving information about the alignment benchmarks that were employed to infer
new Markov models.

6.4.1 Selection of Matrices

This study looked at the following amino acid substitution models:

PAM (Dayhoff et al., 1978): This is the oldest Markov model proposed to capture amino
acid evolution, which in turn inspired many subsequent improvements. It is still a widely-used
matrix (particularly the PAM-250 scoring matrix) within many distributed sequence alignment
programs. As described with more details in §6.1.2, it was derived by Dayhoff et al. (1978) over
a small and limited dataset, covering only 1572 substitutions (with no observed replacements
for some amino acid pairs). This thesis computes the PAM-1 conditional probability matrix
using raw data published in the original paper (i.e. the substitution count matrix, relative
mutabilities and relative frequencies).

JTT (Jones et al., 1992a): JTT (also known as PET91) is an improved version of PAM.
The main difference lies in the use of an approximate method for phylogenetic tree inference
instead of the maximum parsimony method used by Dayhoff et al. (1978). The authors identified
potential homology between two proteins by analysing their 3-mer frequencies (i.e. a higher
number of identical 3-mers suggests greater homology), via a normalised 3-mer frequency score
denoting the fractional area of overlap between two 3-mer histograms. This is regarded as a
heuristic measure of identity. They also examined how this measure varies with Needleman-
Wunch alignment scores (under a constant gap) and the resultant percent identities. Next, they
constructed a distance matrix based only on sequence pairs with > 85% identity, and performed
single-linkage clustering. Substitution statistics were derived in terms of each sequence based
on its alignment with another sequence that gives the highest pairwise alignment score. There
are two versions of the PET91 conditional probability matrix (equivalent to PAM1): one based
on PIR release 29, and the other one based on Swiss-Prot Release 22, available at http:

//bioinfadmin.cs.ucl.ac.uk/downloads/Matrices. This thesis uses the latter version.

http://bioinfadmin.cs.ucl.ac.uk/downloads/Matrices
http://bioinfadmin.cs.ucl.ac.uk/downloads/Matrices
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BLOSUM (Henikoff and Henikoff, 1992): The BLOSUM series acts as a landmark,
non-Markov model for substitution modelling. The method of deriving this series was dis-
cussed in §6.1.3. It is the most used non-Markov matrix series, with BLOSUM-62 being
the common choice for aligning averagely distant pairs.2 BLOSUM-45 and BLOSUM-90 are
common choices for more distant and closely related pairs, respectively. Theoretically, any
BLOSUM-n matrix can be obtained over a block of ungapped, multiple alignments. The au-
thors originally published 16 target frequency (joint probability) matrices and scoring matrices
(at ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum – latest version 5.0 in 1992)
for n ∈ {30, 35, . . . , 90, 95, 100} and n = 62. They have been inferred over 2000 ungapped
multiple alignment blocks from the BLOCKS database (Pietrokovski et al., 1996), across more
than 500 groups of related proteins, with at least 2369 changes for each possible amino acid
pair. The conditional probability distributions are directly obtainable from those joint proba-
bility matrices, as the null probability distribution of amino acids is reflected by the marginal
distribution. Note: This thesis takes BLOSUM-62 as the representative matrix of the model.

Johnson-Overington matrix (Johnson and Overington, 1993): Denoted by JO, this is
an early, non-Markov matrix that was estimated on structural alignment data. The originally
published substitution count matrix can be used to derive a conditional probability matrix with
maximum likelihood estimates over the count data (i.e. Pr(ai|aj) = nai,aj/

∑
∀ai nai,aj for every

amino acid pair ai and aj, as defined in the original paper). Their dataset covered 207,795
amino acid exchanges present in 65 homologous sets of 3D structural alignments across 235
proteins, mainly incorporating 15% to 40% sequence identity.

WAG (Whelan and Goldman, 2001): This matrix mainly represents substitution propen-
sities in globular protein family sequences, inferred as a CTMC over 3905 proteins across 182
families from an earlier existed and unpublished sequence alignment database called BRKALN.
Whelan and Goldman (2001) have followed an EM based Maximum-Likelihood method to es-
timate a count based rate matrix Q, by defining the likelihood of the model given the families
of aligned proteins and their phylogenetic trees (with relative branch lengths), and iteratively
re-inferring Q and the phylogenetic relationships until convergence. The WAG rate matrix
has been published with its associated amino acid frequencies at https://www.ebi.ac.uk/

goldman-srv/WAG/wag.dat. Le and Gascuel (2008) note a potential bias in the used dataset
in terms of globular proteins that are easy to be crystallised (due to the fact that, a protein
family has been included if at least one protein in the family had a resolved 3D structure at
the time BRKALN was developed in the mid 90s).

VTML (Müller et al., 2002): VTML stands for Variable Time Maximum Likelihood,
presented as a CTMC model. Originally, Müller and Vingron (2000) proposed the VT matrix,
inferred via a matrix resolvent method to iteratively estimate the rate matrix over pairwise
sequence alignments from the SYSTERS protein family database (Krause et al., 2000) (over
2.7 million amino acid pairs). They have used PAM as the starting point for the search.
This method have also accounted for the optimal evolutionary divergence between proteins.
Later, VTML was inferred using an iterative ML estimation. The Perl script for generating the
VTML1 matrix is available at: https://owww.molgen.mpg.de/~muelle_t/vt_scores

2Both BLOSUM and PAM appear as substitution matrix choices for the BLAST (Altschul et al., 1990)
alignment program.

ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blosum
https://www.ebi.ac.uk/goldman-srv/WAG/wag.dat
https://www.ebi.ac.uk/goldman-srv/WAG/wag.dat
https://owww.molgen.mpg.de/~muelle_t/vt_scores
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LG (Le and Gascuel, 2008): This is an improved version of the WAG (CTMC) model,
covering more families and accounting for rate variations across amino acid sites (through a
set of gamma distributed rate categories). This incorporated 3912 seed (multiple) sequence
alignments from the Pfam database (Bateman et al., 2000), over around 50, 000 sequences with
approximately 6.5 million amino acids. Overall, 3912 alignments with a limited number of
gaps (∼ 1% of the amino acids being inserted/deleted) were involved. They also followed an
EM based ML estimation similar to the procedure of WAG inference. The rate matrix and
the associated amino acid frequencies are available from: http://www.atgc-montpellier.fr/
download/datasets/models/lg_LG.PAML.txt.

MIQS (Yamada and Tomii, 2013): MIQS was derived through a PCA analysis of several
existing scoring matrices including BLOSUM and VTML, by sampling a new point from the
PCA subspace defined by the first three principal components. Since there is no specific null
amino acid distribution involved, this thesis applied the optimal null model MML probability
estimates of amino acids over the 59,092 benchmark structural alignment dataset (described in
§5.3.1), when deriving the associated conditional probability matrix as per §6.2.4. This ensures
fair treatment. The MIQS scoring matrix (published in 3 bit units) was retrieved through the
DECIPHER Bioconductor package (https://rdrr.io/bioc/DECIPHER/man/MIQS.html). A
scaling factor c = 3 was applied during the conversion of this scoring matrix to its conditional
probability form using the Equation 6.1.

PFASUM (Keul et al., 2017): This is the most recent, BLOSUM-like family of matrices,
derived over Pfam seed multiple structural alignments. Unlike BLOSUM, PFASUM has taken
gapped alignments into account, while also considering special amino acids. The scoring ma-
trix series is available at: http://www.cbs.tu-darmstadt.de/PFASUM/. As the corresponding
amino acid frequencies have not been published, this thesis computed a conditional probabil-
ity matrix of any PFASUM-n scoring matrix in the same way as done for the MIQS matrix.
It should also be noted that, PFASUM-n scoring matrices for the ranges of 30 ≤ n ≤ 42,
43 ≤ n ≤ 73 and 74 ≤ n ≤ 100 have been published by the authors in 4 bit units, 3 bit
units and 2 bit units, respectively. Thus, the appropriate conversion was applied to 16 matrices
covering n ∈ {30, 35, ..., 90, 95, 100} and n = 62 matrices (equivalently comparable to the BLO-
SUM series). Scaling factors were assigned suitably (i.e. c = 4,c = 3 and c = 2, respectively
for Equation 6.1). This thesis takes PFASUM-60 as the representative matrix of the model,
since the authors have recommended it to be a general choice for distant relationship detection
based on their evaluations.

Altogether, this selection of historical and recent matrices consists of five Markov models
and four non-Markov models, representing the four decades long timeline of efforts for amino
acid substitution modelling (from 1978 to 2020).

6.4.2 Selection of Alignment Benchmarks

This thesis employed the following structural alignment benchmarks to validate the MML ma-
trix optimisation framework introduced in §6.3. Each benchmark individually provides a source
collection D of protein sequence pairs and their alignment relationships. (Note: all possible
pairwise relationships were extracted from multiple alignment benchmarks.) The primary basis
for comparing substitution matrices is the Shannon information content of encoding all protein

http://www.atgc-montpellier.fr/download/datasets/models/lg_LG.PAML.txt
http://www.atgc-montpellier.fr/download/datasets/models/lg_LG.PAML.txt
https://rdrr.io/bioc/DECIPHER/man/MIQS.html
http://www.cbs.tu-darmstadt.de/PFASUM/
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sequences in a given benchmark. Since a substitution model closest to the true model is ex-
pected to encode these aligned protein sequence data as economically as possible, we expect the
best model to give the lowest amount of information (ie. the shortest message length). In infor-
mation theoretic terms, a better substitution model improves compression of those sequences
by effectively utilising their pairwise structural relationships. The D is losslessly compressed
under the MML criterion (given by Equation 6.6).

This study took the following benchmarks of structural alignments:

HOMSTRAD (Mizuguchi et al., 1998) (https://mizuguchilab.org/homstrad) is a database
of multiple structural alignments for homologous protein families. It covers 1032 families with
known structures. Their alignments are semi-manually curated using the structural alignment
programs: MNYFIT, STAMP and COMPARER (Sutcliffe et al., 1987; Russell and Barton,
1992; Sali and Blundell, 1990).

Mattbench (Daniels et al., 2011) (https://bcb.cs.tufts.edu/mattbench/Mattbench.html
– version 1.0) database has been curated using the structural alignment program MATT (Menke
et al., 2008). This thesis combines Mattbench’s two sets of alignments classified as superfam-
ily and twilight zone into a single benchmark. The superfamily set contains alignments of 225
groups of homologous protein domains, where all pairs of domains in any group have a sequence
identity < 50%. The twilight zone set is a much smaller and distinct set, containing alignments
covering 34 distantly related groups where the sequence identity threshold is < 20% (Daniels
et al., 2011).

SABMARK (Van Walle et al., 2005) (http://bioinformatics.vub.ac.be/databases/
databases.html – version 1.65) is a more extensive set of alignments covering superfamily and
twilight zone sets of protein domains, whose alignments have been generated using SOFI and
CE (Boutonnet et al., 1995; Shindyalov and Bourne, 1998). The superfamily set (SABMARK-sup)
contains 425 groups of multiple alignments, while the twilight zone set (SABMARK-twi) contains
209 groups.

SCOP (Andreeva et al., 2020) (https://scop.berkeley.edu) database (v2.07) was used
to derive a set of 59,092 unique protein domain pairs, randomly sampled from the super-
family (36,372) and family (22,720) levels of its hierarchy. (This source collection was re-
sultant from the sampling and filtering procedure described in §5.3.1). These 59,092 pairs
were aligned separately using DALI (Holm and Sander, 1993) (DaliLite.v5 from http://

ekhidna2.biocenter.helsinki.fi/dali/) and MMLigner (Collier et al., 2017) (https://
lcb.infotech.monash.edu/mmligner) structural alignment programs to provide two align-
ment benchmarks: SCOP1 and SCOP2. SCOP1 has only 56, 292 structural alignments, as DALI
did not produce any alignment for 2800 pairs.

The descriptive statistics of all involved benchmarks are listed in Table 6.1.3 SCOP2 can be
taken as the most representative benchmark since it is the largest in size (i.e total number of
pairwise alignments), covering a good distribution of sequence identity percentages indicating

3Sequence identity percentage of a pair of proteins is computed as the number of matched, identical amino
acid pairs between two sequences divided by the length of the shorter sequence.

https://mizuguchilab.org/homstrad
https://bcb.cs.tufts.edu/mattbench/Mattbench.html
http://bioinformatics.vub.ac.be/databases/databases.html
http://bioinformatics.vub.ac.be/databases/databases.html
https://scop.berkeley.edu
http://ekhidna2.biocenter.helsinki.fi/dali/
http://ekhidna2.biocenter.helsinki.fi/dali/
https://lcb.infotech.monash.edu/mmligner
https://lcb.infotech.monash.edu/mmligner
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Table 6.1: Structural alignment benchmark datasets (with their total number of aligned pairs
(size), total number of matches, total number of insertions, total number of deletions, and the
mean sequence identity percentage)

Dataset Size # of ms # of is # of ds Mean id. %
HOMSTRAD 8323 1,311,478 96,911 98,810 35.1
Mattbench 5286 826,506 177,401 177,789 19.4
SABMARK-Sup 19,092 1,750,440 848,859 861,344 15.2
SABMARK-Twi 10,667 694,954 515,318 527,188 8.4
SCOP1 56,292 8,663,652 1,407,988 1,373,882 25.5
SCOP2 59,092 8,145,678 1,673,687 1,653,531 24.8

Figure 6.3: Sequence identity percentage distributions (histograms) across the six structural
alignment benchmarks

varying degrees of evolutionary divergence.4 See Figure 6.3 for sequence identity percentage
histograms of each benchmark. As indicative from the histograms, Mattbench and SABMARK are
more biased towards distant relationships. On the other hand, HOMSTRAD covers a wide range
of evolutionary time.

An MML stochastic matrix was inferred over each of the above six benchmarks, resulting
in six new matrices: MMLHOMSTRAD, MMLMATTBENCH, MMLSABMARK-Sup, MMLSABMARK-Twi, MMLSCOP1

and MMLSCOP2.
5 Their individual performance was compared to the previously listed existing

substitution matrices as well as to each other, in Shannon information terms.
The purpose of incorporating several benchmarks was to test and validate the developed

MML framework of Markov matrix optimisation for its general and consistent applicability
as a method for optimising/evaluating the performance of any substitution matrix over any
alignment benchmark. This selection of benchmarks is comprehensive since they represent
different structural alignment hypotheses produced by a range of structural alignment programs.

6.4.3 Performance of Matrices across Benchmark Datasets

Here, the performance measure for evaluating any substitution matrix is the Shannon informa-
tion content (defined by Equation 6.6) it incurs when encoding a given alignment benchmark.

4This is further justified by the performance of its inferred matrix across all the other benchmarks (highlighted
in the next section §6.4.3).

5Later known as MMLSUM
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All matrices were evaluated under three different choices (listed below), by varying the choice
of P (i.e. the 20-state distribution that gives null model probabilities of amino acids) which is
used to encode insertions and deletions.

Choice 1: The optimal 20-state null model probabilities estimated over the indel regions of
the alignments in the respective benchmark using the MML87 method (§4.4)

Choice 2: The stationary distribution of the stochastic substitution matrix M

Choice 3: The optimal 20-state null model probabilities estimated over the database of UniProt
protein sequences using the MML87 method (§4.4)

Both Choice 1 and 3 ensure a constant and independent null model application throughout
the optimisation. Thus, we can exclude the information term I(P) from the objective function
(Equation 6.6) during matrix optimisation. In contrast, the objective function under choice 2
is controlled by a varying P at each iteration, as a perturbed matrix results in a perturbed
stationary distribution. Consequently, two matrices (one under choice 1 and the other under
choice 2) were inferred and evaluated over each benchmark. There is no need to infer another
matrix under choice 3 since it is equivalent to choice 1. (Note: Only choice 1 requires P to
be communicated. P under choice 2 can be obtained from the substitution matrix M itself.
Further, choice 3 uses a universally applicable null model distribution which can be regarded
as appearing in the codebook).

As with choices 1 and 3, the null model probabilities for matches and null model probabilities
for indels do not necessarily have to be the same. (Recall that in this chapter, we use the
stationary distribution of M as the null model probabilities for encoding matches, as described
in §6.3). We can speculate that the evolutionary pressures these different regions go through
may be different. As proteins evolve, they may freely accumulate indels, while matched regions
undergo more pressure in conserving their amino acids.

Let us now evaluate the fifteen matrices (i.e. 9 existing matrices listed in §6.4.1 and the 6
newly inferred matrices listed in §6.4.2) under each of the above choices in terms of the Shannon
information content required for encoding each benchmark of structural alignments.

Shannon Information Content of Benchmarks under Choice 1

Table 6.2 presents results for all matrices, where all parameters have been optimised for the
respective benchmark. Their ranks of performance with respect to the particular benchmark
are also listed beside their numerical figures (inside parenthesis). Here, the previously published
matrices are arranged in their chronological order of publication. The last five rows show results
for the stochastic matrices inferred from each benchmark.

Generally, a trend of model improvement can be observed for existing matrices with respect
to their time of appearance in the field. To get an overall view of each matrix performance, a
simple-yet-effective statistic is the (row-wise) sum of ranks of each matrix over all benchmarks,
ranksum in short. This statistic acts as a consensus over all benchmarks generated from indi-
vidual ranks. Since the evaluation here involves 15 matrices over 6 benchmarks, the ranksum of
any matrix is an integer between 6×1 = 6 (i.e. the best possible performance) and 6×15 = 90
(i.e. the worst possible performance).

Amongst the set of existing matrices, PAM (ranksum = 90) consistently gave the worst (i.e.
longest) lossless encoding lengths across all benchmarks. This is to be expected as PAM was
derived in the late 70s using a limited set of closely related protein relationships available
at that time. The noted shortcomings of its derivation in §6.1.2 explains this observation,
affirming PAM as less representative of the current corpus of proteins. PAM’s performance is
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followed by the performance of JO (ranksum = 83), JTT (ranksum = 79), LG (ranksum = 64),
WAG (ranksum = 60), MIQS (ranksum = 56), BLOSUM (ranksum = 52), VTML (ranksum = 44) and
PFASUM (ranksum = 41). JTT indeed improved PAM. Despite being more recent and based on a
more informative structural alignment dataset, JO lags behind JTT, yet with better compression
than PAM. WAG and VTML arose roughly around the same time, yet VTML leads with a considerable
difference. A counter-intuitive observation is that, LG is behind WAG in general performance
according to ranksum, even though it was introduced as an improvement to WAG. However
it performs better in three benchmarks: Mattbench, SABMARK-Twi and SCOP2. Further, the
modern matrix MIQS lags behind BLOSUM and VTML models.

In general, the ranksums suggest that, by and large, the previously published models of
amino acid substitutions have improved over time. However, BLOSUM is amongst the earliest
matrices (published in 1992), which outperforms several other matrices that were proposed
much later on. This substantiates BLOSUM’s wide usage (particularly BLOSUM-62) in protein se-
quence alignment as an effective series of substitution matrices (See Table 6.6 for the series-wide
performance of BLOSUM). It reflects the validity of the commonly accepted non-Markov BLOSUM

series even in its non-trivial Markov context. However BLOSUM is superseded by VTML (published
in 2002) and PFASUM (published recently in 2017). PFASUM being the recent BLOSUM-like matrix
series, is again apparent to be performing the best amongst all the existing substitution models
(See Table 6.6 for the series wide performance of PFASUM equivalent to BLOSUM). It is ahead
of other existing models, explainable by its basis on the manually curated Pfam structural
alignments.

In comparison, the inferred, benchmark-specific matrices perform consistently better than
previously-published substitution matrices. This is precisely observed in Table 6.2 via the high-
lighted numerical figures. Such performance is expected, since the purpose of optimising those
matrices (under the SA iterative search with PFASUM as the starting point – See §6.3.2) was
to improve the current standing of amino acid substitution modelling. However, the utility
of any matrix lies in its ability to generalise to other benchmarks and perform well on those.
The Table 6.2 clearly demonstrates the ability of MML-inferred matrices to generalise and
explain any benchmark, far outperforming all existing ones. From the point of view of their
ranksums: MMLSABMARK-Sup gives ranksum = 26 across all benchmarks, while MMLMATTBENCH and
MMLHOMSTRAD give ranksum = 25. The top two performers overall come from the matrices in-
ferred on the two SCOP benchmarks, MMLSCOP1 (ranksum = 18) and MMLSCOP2 (ranksum = 15).
This implies that the SCOP benchmark has a better coverage of average substitution patterns
for different levels of evolutionary divergence, thus resulting in a more generalisable model of
sequence evolution. (Specifically, SCOP2 is nearly three times larger than SABMARK-Sup, and
seven times that of HOMSTRAD). Between SCOP1 and SCOP2, the difference lies in the alignment
hypotheses for the same set of protein domain pairs. The general trend observed for MMLSCOP1

continues for MMLSCOP2 as well. However, all total message length figures reported for the SCOP

DALI alignments are significantly higher (despite the smaller number of alignments compared
to SCOPMMLigner), indicating that the MMLigner structural alignments convey more protein
sequence compressibility.

The sole outlier amongst the MML-inferred matrices was MMLSABMARK-Twi with a ranksum =
42. As already stated, SABMARK-Twi benchmark contains alignments of highly-diverged sequence-
pairs (i.e. an average sequence identity of ∼8.4%), providing an extremely weak sequence signal
to infer a stochastic matrix which can be effectively generalised to explain a wider range of
sequence relationships that any other benchmark may embody. However, a noteworthy obser-
vation is that, MMLSABMARK-Twi (ranksum = 42) is nearly in par with PFASUM (ranksum = 41),
the best performer amongst the set of existing matrices.
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Shannon Information Content of Benchmarks under Choice 2

Choice 2 applies the stationary distribution of the stochastic matrix as the null model proba-
bilities of amino acids for indels. Table 6.3 presents the total message lengths resultant for each
existing matrix and inferred matrix across the benchmarks, with their respective ranksums. In
contrast to choice 1 results, Table 6.3 reflects how well each stochastic matrix explains the null
model distribution of amino acids in protein sequences through their stationary distributions.
Under this category, each MML-inferred matrix is a resultant of an optimisation that included
its stationary distribution to explain the indels in the respective benchmark. The order of
compression ability changes, with the overall observation that, MMLSCOP2 matrix still performs
the best across all benchmarks with the lowest ranksum = 16. This time, MMLSABMARK-Sup has
beaten MMLSCOP2, becoming the next best to MMLSCOP1. Note that overall message lengths
are higher than when using choice 1 (this is again apparent since choice 1 optimised the null
distribution for the particular benchmark).

Shannon Information Content of Benchmarks under Choice 3

Choice 3 simply applies optimal null model estimates inferred over protein sequences from the
UniProt database (as discussed in §4.4). This 20-state distribution P is no longer communi-
cated in the respective encoding message, as it is simply common knowledge. See Table 6.4 for
results. Here, the ranksums observed for choice 1 in the Table 6.2 are preserved, except for LG
and MIQS where their ranks over SCOP2 have interchanged.

Altogether, the 20-state null model estimates inferred on indel regions of the benchmark
gives a better (i.e. shorter) encoding length, compared to that of when using the stationary
distribution of the substitution matrix. The P inferred on UniProt gives the longest encoding
length amongst the three choices. Refer Figure 6.4 for overall trends in total encoding lengths
of benchmarks across the fifteen matrices. Table 6.5 summarises the results in terms of matrix
ranksums across the three choices for P. A notable observation is that, PAM, JO and MMLSCOP2

ranksums remain the same across the three different choices for P.

Conclusions

This section presented a unique comparative analysis of an important set of existing substitution
models, which undoubtedly signifies the continuous improvement of amino acid substitution
modelling over time. The MML matrix optimisation framework facilitates their consistent
and fair evaluation. Broadly, the performance of non-Markov models converted into proper
Markov models favours the hypothesis of a time homogeneous Markovian behaviour in protein
sequence evolution (consistent with how substitution matrices were originally conceived). The
framework supports any non-Markov, single substitution matrix to be utilised as a Markov
matrix, which effectively accounts for the optimal evolutionary time between two proteins
when their relationship is evaluated. The MMLSCOP2 stochastic matrix inferred over the SCOP2

benchmark outperforms all the other matrices, displaying a ranksum = 15 and ranksum = 16
under both choices 1,3 and choice 2, respectively. Hence, it is chosen as a newly inferred,
reasonable Markov model of amino acid substitution. As already highlighted in its very first
mention at the end of §6.3.2, this matrix is named as MMLSUM.

The next two sections specifically look at the similarities and differences between all nine
existing matrices and the new matrix MMLSUM. Additionally, Appendix B illustrates different
amino acid properties captured by those matrices. An independent focus on the characteristics
and properties of MMLSUM is made in §6.5.
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Figure 6.4: Encoding lengths (Shannon information content) of all six benchmarks resultant
from different substitution matrices under the three different choices for P 20-state null model
distribution

6.4.4 Kullback-Leibler Divergence between Matrices

This comparative study undertook an analysis to quantitatively highlight the similarities and
differences between the ten stochastic matrices (nine existing matrices and MMLSUM (i.e.
MMLSCOP2)) independent of any benchmarks. It should be emphasised that, this analysis does
not provide any statement on the relative performance of various matrices (presented in the
previous section), yet assists in gauging their relative concordance. Here, the notion of Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951) is computed between any two substitution
matrices. KL divergence estimates the measure of relative Shannon entropy between two prob-
ability distributions. For any two matrices X and Y (considered in their stochastic form), their
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Table 6.5: Matrix ranksum under the three choices for P (along with their ranks inside paren-
theses)

Matrix Choice 1 Choice 2 Choice 3

PAM 90 (14) 90 (15) 90 (13)
JTT 79 (12) 77 (13) 79 (11)
BLOSUM 52 (08) 67 (11) 52 (08)
JO 83 (13) 83 (14) 83 (12)
WAG 60 (10) 58 (10) 60 (09)
VTML 44 (07) 53 (09) 44 (07)
LG 64 (11) 72 (12) 68 (10)
MIQS 56 (09) 49 (08) 52 (08)
PFASUM 41 (05) 27 (05) 41 (05)
MMLHOMSTRAD 25 (03) 34 (06) 25 (03)
MMLMATTBENCH 25 (03) 36 (07) 25 (03)
MMLSABMARK-Sup 26 (04) 17 (02) 26 (04)
MMLSABMARK-Twi 42 (06) 23 (04) 42 (06)
MMLSCOP1 18 (02) 18 (03) 18 (02)
MMLSCOP2 15 (01) 16 (01) 15 (01)

KL divergence is measured in two different ways:

KL divergence (over joint probabilities) =
20∑
i=1

20∑
j=1

Xi,j log

(
Xi,j

Yi,j

)

KL divergence (over conditional probabilities) =
20∑
i=1

20∑
j=1

Xi,j log

(
Xi|j

Yi|j

)
Here, Xi,j denotes the joint probability implied by matrix X for the pair of amino acids indexed
by i and j (and similarly, for Yi,j). On the other hand, Xi|j denotes the conditional (substitution)
probability implied by matrix X of an amino acid indexed by i, given an amino acid indexed
by j (and similarly, for Yi|j). Note, by default, the stochastic matrix is in its conditional form
containing conditional probability terms between amino acids. The joint probability terms are
computed as products of their conditional probability times the stationary probability.

Figure 6.5 presents heatmaps of the KL divergence measure between each pair of the ten ma-
trices (in terms of both, conditional probability and joint probability) in comparison. (Note, KL
divergence is not a metric, thus the resultant heatmap matrix is not symmetric). To highlight
the relative-change in the concordance between matrices as they evolve with time, Figure 6.5
shows KL divergence computed between matrices at three time points. These time points are
equivalent to all matrices such that, the estimated expected change in amino acids are all same.
Accordingly, we can look at relative differences of these Markov models at {1%, 50%, 80%} ex-
pected change.

The numbers suggest that the distance between matrices widens and the differences between
them become more apparent as their expected change increases. PAM and JO are radically
different from other matrices, and this correlates with their poor performance observed in
terms of their ranksums as seen in the previous section.
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Figure 6.5: KL divergence based distance matrices (in the form of heat maps) between ten matrices
(9 existing matrices and the newly inferred MMLSUM matrix). Left column is the computation of KL
divergence over conditional probabilities of amino acid interchanges. Right column is the computation
of KL divergence over the corresponding joint probabilities of interchanges. The three rows compare
between equivalent states of matrices when their expected amino acid change is 1%, 50% and 80%,
respectively. (Note: All measures are in nits)

Clustering of substitution matrices

Additionally, these heatmaps (i.e. distance matrices) of KL divergence can be used to cluster
these substitution models and gain some insights on which of them are closest or farthest to each
other. Figure 6.6 visualises dendrograms resultant from agglomerative hierarchical clustering
of the ten conditional probability matrices and separately, their joint probability matrices,
using the average linkage method (Unweighted average distance (UPGMA)) for computing the
distance between clusters. Again, the expected change values of 1%, 50%, 80% are considered.

A notable observation is that the clustering structures bear slight differences in their ar-
rangement when the expected change increases. Also the clusters resultant from conditional
matrices and joint matrices are clearly not in concordance. This is possible because, the joint
probability model incorporates the matrix stationary distribution. Basically, matrix perfor-
mance is reliant on the joint probability matrix, since a matched amino acid pair is encoded
using its joint probability (i.e. conditional probability × stationary probability).

In clustering structures for joint probability matrices, PAM and JO are separated from the
rest across all the three dendrograms. It reflects their similar weak performance in encoding an
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Figure 6.6: Agglomerative hierarchical clustering of conditional probability matrices (in the first
column) and joint probability matrices (in the second column) based on their KL divergence
matrix. Rows account for matrices with 1%, 50% and 80% expected change, respectively. Note:
all KL divergence measures are in nits. (Note: clusterings were generated using MATLAB
R2017a (The Mathworks, Inc., 2017))

alignment benchmark (as already observed in the previous section, ranksum = 90 for PAM and
ranksum = 83 for JO, consistently across all three choices of P 20-state null model distribution).
The next noticeable positions are of LG and BLOSUM. They are close performers with adjacent
ranksums: 72 and 67, respectively under choice 2. Across all three expected change values,
they are consistently separated out from the rest. Despite few differences in the clustering
arrangement, VTML, MIQS, PFASUM and MMLSUM come under the same group, again reflecting
their adjacent order of ranksums under choice 2. There, MIQS and PFASUM are consistently
clustered the closest to each other, while VTML and MMLSUM makes another group.

Note: It is somewhat difficult to arrive at any direct correlations between matrix perfor-
mance and matrix similarity, as it depends on the average similarity of all matrices (∀t ∈
[1, 1000]) coming under each Markov model.
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Figure 6.7: Histograms of the evolutionary time parameter t under each substitution model, inferred
for the 59, 092 aligned pairs of protein domains in the SCOP2 benchmark

In terms of the conditional probability matrices, PAM and its improved version JTT are
grouped together, implying their proximity in the timeline of appearance. WAG and its im-
proved version LG are closer under 1% expected change, yet seems to deviate away as the
evolutionary time increases. On the other hand, VTML and MIQS which are close adjacent per-
formers under choice 2 and 3, are also clustered together. As expected, PFASUM and MMLSUM

are closer. Interestingly, BLOSUM is closest to both of them. Another interesting cluster is WAG

and its improved version: LG. As expected, the latest PFASUM (published in 2017) matrix and
the newly inferred MMLSUM matrix in this thesis (2020) are the closest to each other. Next to
them is BLOSUM (published in 1990), reflecting the reason for the series to be still considered as
timely.

Again, these groupings are interesting observations, yet do not necessarily inform relative
performance characteristics of the matrices. Not all groupings are intuitively explainable.

6.4.5 Stochastic Matrix Convergence to Equilibrium

It is interesting to examine how the optimal evolutionary time t between two amino acid
sequences may vary under different Markov models of amino acid substitution. Figure 6.7
illustrates the histograms of time t resultant under the ten different stochastic matrices, when
they were used to encode the protein alignments in the SCOP2 benchmark. The variations
present in the histograms are due to the different clock speeds these matrices possess (i.e.
differences in the time taken to reach the equilibrium state of the Markov chain – the mixing
time), despite having a base matrix (corresponding to t = 1 unit of time) that accounts for the
same 1% expected change.

A decomposed view into the rate of convergence in terms of each amino acid can provide
an insight to this (See Figure 6.8). KL divergence measure between each amino acid column
in the conditional probability matrix and its stationary distribution reflects the speed in which
each matrix column converges into its equilibrium state. Once an amino acid x column reaches
equilibrium, it is no longer able to differentiate any substitution pair x → y against x and y
random occurrences. This is the point where models find it difficult to detect any relationship
between highly diverged sequences.

As observed in Figure 6.8, all columns of PAM takes a longer time for convergence compared
to the others. Four outlier curves are present in its KL divergence plot, accounting for amino
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Figure 6.8: Across different substitution models, how each column vector of the conditional
probability matrix reaches the matrix stationary distribution as evolutionary time t increases,
measured in terms of the KL divergence between the two L1-normalised probability vectors.
Note how different matrices take a different time to reach the equilibrium state.

acids {W,C, F, Y}. Interestingly, only W acts as an outlier curve across all matrices, taking more
time for convergence compared to other amino acids. C is not an outlier for LG and MIQS
models. Note that C curve in JO is an extreme outlier with a significantly low convergence
rate. The rest of the JO columns seems to converge more faster compared to PAM. This
explains why we observe an optimal t distribution for JO in Figure 6.7 that is not as spread as
PAM, JTT and LG. In general, all models have roughly reached equilibrium when t = 1000.
Figure 6.9 zooms into the KL divergence plot of MMLSUM stochastic matrix. All curves
roughly tend to 0 around t = 600, suggesting its limit of differentiation.

The difference in clock speed also relates to how the expected change of each model differs
as a function of t, shown in Figure 6.10. The expected change of amino acid substitutions
implicit in any substitution matrix shows to be non-linear with a logarithmic growth as the
evolutionary time increases. This is due to the increase in the number of back substitutions
that replace back the same amino acid after multiple time steps (i.e. x→ y→ .. x). Eventually,
the average observed percentage of difference asymptotically approaches a constant value as
the matrix tend to the equilibrium state. At t = 1000, this value is 93.256% for PAM, while
MMLSUM reaches 93.9497%. (See §6.2.3 on computing the expected change for a given condi-
tional probability matrix of a Markov model).

The comparative study of amino acid substitution matrices presented in this section in-
cluded representative matrices from the non-Markov series of BLOSUM and PFASUM, namely
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Figure 6.9: How each column vector of the MMLSUM conditional probability matrix reaches
its stationary distribution as the evolutionary time t increases, measured in terms of the KL
divergence between the two L1-normalised probability vectors. Note that by t = 600, all
columns are almost at equilibrium

Figure 6.10: How the expected change of each Markov model changes as a function of evolu-
tionary time t
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BLOSUM-62 and PFASUM-60. The following auxiliary section extends the performance anal-
ysis across all equivalent matrices in these two series. The focus is to compare their Shannon
information content of encoding the SCOP2 benchmark under choice 1.

6.4.6 Analysis of BLOSUM and PFASUM Series

This section accompanies an extended evaluation of the entire BLOSUM series (of sixteen
matrices) and its equivalent PFASUM series, under choice 1 described in §6.4.3. Its purpose was
to analyse how well all matrices in the BLOSUM series (i.e. most popularly used non-Markov
series of substitution matrices) and PFASUM series (i.e. the best-performing, BLOSUM-like
series amongst the existing substitution matrices) compress the SCOP2 benchmark, under their
respective stochastic matrix form.

Table 6.6 is an extended set of results for Table 6.2 under the SCOP2 benchmark. Table
6.2 only conveyed Shannon information content in terms of a representative BLOSUM matrix
(i.e. BLOSUM-62) and a representative PFASUM matrix (i.e. PFASUM-60). As reasoned
previously, those two were chosen based on their applicability as a general-purpose log-odds
scoring matrix in their respective series. Table 6.6 reports the Shannon information content
associated with encoding all SCOP2 benchmark alignments using each BLOSUM-n matrix in
the BLOSUM series, as well as each equivalent PFASUM-n matrix in the PFASUM series.
The accompanying Figure 6.11 illustrates the total encoding message lengths (i.e. Shannon
information content) reported in Table 6.6 as a function of the expected amino acid change
implicit in their original scoring matrices. Consistent with the picture that emerged when
comparing existing matrices, we can observe (see Figure 6.11) that the PFASUM series performs
better than the BLOSUM series. Across the matrices in PFASUM, we can observe a flat trend of

Figure 6.11: Shannon information content of each matrix in BLOSUM and PFASUM series
versus their original expected change values (observed in their original non-Markov matrices).
Bn and Pn are shortened names for BLOSUM-n and PFASUM-n, respectively.
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Table 6.6: Shannon information content (in bits) to losslessly encode the SCOP2 benchmark
using varying substitution matrices from the BLOSUM and PFASUM matrix series under
choice 1

.

BLOSUM
series

Original
expected
change

Total
message
length

BLOSUM-30 0.8482 82439452.76
BLOSUM-35 0.8161 82227426.03
BLOSUM-40 0.7903 82060377.07
BLOSUM-45 0.7587 81999170.77
BLOSUM-50 0.7286 81966740.66
BLOSUM-55 0.7041 81964908.57
BLOSUM-60 0.6790 81981508.57
BLOSUM-62 0.6681 81995179.31
BLOSUM-65 0.6530 81994670.34
BLOSUM-70 0.6309 82004034.57
BLOSUM-75 0.6128 82014056.31
BLOSUM-80 0.5928 82010530.24
BLOSUM-85 0.5684 82012220.79
BLOSUM-90 0.5413 81997158.82
BLOSUM-95 0.5129 81999074.38
BLOSUM-100 0.4729 82004612.48

PFASUM
series

Original
expected
change

Total
message
length

PFASUM-30 0.8219 81910293.61
PFASUM-35 0.8059 81904481.06
PFASUM-40 0.7896 81901816.25
PFASUM-45 0.7739 81899988.62
PFASUM-50 0.7584 81900015.41
PFASUM-55 0.7427 81901163.14
PFASUM-60 0.7268 81902713.60
PFASUM-62 0.7204 81903374.10
PFASUM-65 0.7108 81904599.34
PFASUM-70 0.6946 81906335.59
PFASUM-75 0.6774 81907860.48
PFASUM-80 0.6562 81909272.54
PFASUM-85 0.6540 81909221.82
PFASUM-90 0.6538 81909091.84
PFASUM-95 0.6537 81909179.07
PFASUM-100 0.6596 81920990.78

encoding lengths suggesting their internal consistency, and that all of them are equally good to
derive a stochastic matrix from. On the other hand, the BLOSUM series, with some variations,
has a more or less flat trend when using matrices converted into a stochastic form within the
range [45,100], whereas matrices in the range [30,40] give substantially worse (larger) message
lengths in comparison. This suggests that BLOSUM[30-40] series of matrices do not generalise
well to explain the range of relationships in SCOP2 benchmark. Another thing to note is that,
BLOSUM-55 and PFASUM-45 are the best performers in their respective series.

BLOSUM being the most popularly used non-Markov family of substitution matrices, this
section additionally carried out a short analysis to check the generalisability and representa-
tion of a BLOSUM-n based stochastic matrix with respect to all the other original BLOSUM
matrices. First, Table 6.7 presents the KL divergence between original BLOSUM-n scoring
matrices and their equivalent stochastic matrices, in terms of both conditional probability and
joint probability. The kth root of an original BLOSUM-n matrix B gives a base matrix M.
The tth exponent of M is the matrix that has an expected change closer to that of B. Ideally,
we expect t to be exactly the same as k, and for the KL divergence to be 0. However, there
are several sources of numerical approximation errors which obstruct that: (1) considering only
integer time points, (2) normalisation of a matrix for columns to be adding up to 1, and (3)
scaling a resultant base matrix to acquire 1% expected change. All matrices except BLOSUM-
30, BLOSUM-35 and BLOSUM-40, have k = t (as expected) with very low KL divergence
values (reasonably approximating the ideal scenario), implying that the original matrix is well-
represented by the derived Markov model. On the other hand, BLOSUM-30, BLOSUM-35 and
BLOSUM-40 suffer from greater numerical instability. Having lower eigenvalues might also
have contributed to this anomaly through matrix multiplication operations. This is likely the
reason for BLOSUM[30-40] to behave as outliers with longer encoding lengths, compared to
that of the other matrices in the series. Overall, BLOSUM-50 is the most well-represented as
a Markov matrix. BLOSUM-62 (which is the series representative of BLOSUM in this thesis
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Figure 6.12: KL divergence between joint probability matrices of original BLOSUM-n (Bk)
and their derived stochastic matrices corresponding to the original expected change. A row i
corresponds to an original BLOSUM matrix i, whereas a column j corresponds to a stochastic
matrix derived for an original BLOSUM matrix j and raised to some power t that gives an
expected change approximately similar to that of BLOSUM matrix i. (Note: All KL divergence
measures are in nits)

(due to its wide usage)) is also reasonably represented by its derived Markov model. A further
comparison supports the conclusion that, under the integral precision, BLOSUM[30-40] matri-
ces are not generalisable, while the rest in the series are reasonably closer in a Markov context.
Figure 6.12 illustrates the heatmap of KL divergence between original BLOSUM matrices and
their derived stochastic matrices equivalent to their original expected change. Note that the
matrices in the same n (clustering percentage) neighbourhood tend to be more closer to each
other.

While this analysis provides an insight into how BLOSUM matrices vary, a more conclusive
study will be to derive the stochastic matrices with a higher precision and then evaluate them.

6.5 Characteristics and Properties of MMLSUM

This section explores characteristics and properties of the newly inferred Markov matrix of
amino acid substitutions: MMLSUM. The MMLSUM matrix has shown to be effective in
compressing any alignment benchmark, compared to the currently used substitution matrices
(as evaluated in §6.4.3). Thus it can be taken as the most reliable representative of average
amino acid substitution patterns observed across the present protein sequence repertoire. The
conditional probability matrix (sometimes also known as the mutation probability matrix)
of MMLSUM-1 (t = 1) base matrix is given by Table 6.8 (following a presentation similar to
Dayhoff et al. (1978)). The diagonal elements clearly carry higher probabilities, as the expected
change at this stage is just 1%.

6.5.1 Amino Acid Clustering

An amino acid substitution matrix encompasses average similarities and differences present
within all possible amino acid substitution patterns, thereby capturing similar groups of amino
acids. It can inform which amino acids are more frequently and less frequently changing, while
giving more insights on their physico-chemical properties. This has been quite a known fact
since the Dayhoff model of evolution. French and Robson (1983) appreciated the important
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Table 6.8: Conditional probability matrix M of MMLSUM for evolutionary time t = 1 (de-
scribing a 1% expected change in amino acids). An element Mij gives the probability that an
amino acid aj is replaced by an amino acid ai after 1 unit of time. Elements are multiplied
by 10, 000, adhering to the same representation by Dayhoff et al. (1978). Columns denote the
original amino acids, whereas rows denote replacement amino acids.

A R N D C Q E G H I L K M F P S T W Y V
A 9895 8 6 3 12 10 8 13 4 3 7 8 10 3 7 23 10 3 4 14
R 2 9895 6 2 1 13 7 0 9 1 3 25 3 0 1 5 5 2 3 1
N 1 3 9890 15 1 8 4 6 9 1 0 7 2 0 2 11 6 0 4 0
D 1 3 19 9913 0 8 20 5 5 0 0 6 0 0 4 7 4 0 1 0
C 1 0 0 0 9935 0 0 0 0 0 1 0 1 1 0 2 1 0 1 1
Q 5 9 6 3 0 9865 17 1 10 0 2 11 6 1 2 6 5 1 3 1
E 9 8 6 22 0 23 9895 1 5 1 1 15 2 0 5 7 7 0 2 2
G 10 4 8 6 3 3 3 9947 3 1 0 4 2 1 4 9 4 1 1 1
H 1 4 4 1 1 5 2 1 9908 0 1 3 1 1 1 2 1 1 7 0
I 4 2 1 0 4 1 0 0 1 9876 21 3 17 10 2 2 4 2 2 38
L 8 5 1 0 6 4 1 2 3 37 9909 2 39 21 3 2 4 8 5 19
K 6 29 11 7 0 18 14 1 5 1 2 9885 5 1 6 7 6 1 2 1
M 2 2 0 0 2 4 1 0 1 7 11 1 9864 3 0 1 2 2 3 2
F 2 1 1 0 3 0 0 1 3 6 11 0 8 9908 0 1 1 11 22 4
P 4 2 3 2 0 3 3 2 1 0 0 3 1 2 9936 4 3 0 1 3
S 16 6 16 11 6 9 7 9 6 1 0 7 5 2 9 9872 26 1 3 2
T 6 3 9 6 4 8 6 2 4 4 3 9 7 3 4 26 9885 2 3 9
W 0 1 0 0 0 0 0 0 1 0 1 0 1 3 0 0 0 9941 5 0
Y 2 4 3 1 2 2 1 0 10 1 2 1 4 19 1 2 3 10 9914 2
V 14 2 1 0 9 4 2 0 2 50 15 1 12 9 2 3 14 3 5 9890

information captured by PAM (Dayhoff et al., 1978), in terms of five observed amino acid
groups: aliphatic, aromatic, basic, hydrophilic and sulphydryl. A multidimensional scaling
over PAM has shown an amino acid group’s tendency to be involved in a different secondary
structural form (French and Robson, 1983). Jones et al. (1992b) noticed that the general trends
of size and hydrophobicity conservation in both PAM and JTT matrices are similar, while their
relative frequencies and mutabilities almost agree.

In this way, checking the clusters of amino acids implicit in a substitution matrix has been
historically flagged as a viable method of checking if the particular matrix captures sensible
patterns of amino acid substitutions. Hence, this section analyses the amino acid groups implicit
in the newly inferred stochastic matrix, MMLSUM, using (1) hierarchical clustering and (2)
tSNE embedding.

Figure 6.13(a) gives a dendrogram generated using agglomerative hierarchical clustering
(based on average-linkage) over the MMLSUM base stochastic matrix (at t = 1). Following
distinct groups can be identified:

• Hydrophobic amino acids:
Valine (V), Isoleucine (I), Leucine (L), Methionine (M)

• Aromatic amino acids:
Tryptophan (W), Tyrosine (Y), Phenylalanine (F)

• Neutral amino acids:
Alanine (A), Serine (S), Threonine (T), Glycine (G), Proline (P)

• Large amino acids:
Arginine (R), Lysine (K), Asparagine (N), Aspartic acid (D), Glutamic acid (E), Glu-
tamine (Q)

• The remaining two amino acids, Histadine (H) and Cysteine (C) cluster apart from the
rest.



6.5. CHARACTERISTICS AND PROPERTIES OF MMLSUM 133

To study the groupings observed more systematically and from a different point of view,
we can apply the technique of t-distributed stochastic neighbor embedding (tSNE) (van der
Maaten and Hinton, 2008) to MMLSUM. tSNE performs a non-linear dimensionality reduction
of high-dimensional feature space and gives visualisations that aid detection of clustering in
lower dimensions (Platzer, 2013; Li et al., 2017).

Currently, there exists different amino acid classification schemes that can be used as ref-
erences to test how well a substitution matrix encapsulates various properties of amino acids.
For the analysis here, this thesis takes distinct classes of amino acids listed mainly by Lefranc
et al. (2015) (IMGT) under the following different classification schemes:

• Hydropathy (hydrophobic/hydrophilic/neutral)

• Charge (uncharged/positively charged/negatively charged)

• Polarity (non polar/polar)

Figure 6.13: (a) Average-linkage clustering of amino acids generated from MMLSUM. (b)-(g)
tSNE clustering of amino acids generated from MMLSUM. All plots have the same clustering,
but coloured under different amino acid classification schemes based on: (b) hydropathy, (c)
charge, (d) polarity, (e) hydrogen donor or acceptor, (f) volume & exposure and (g) chemical
properties (based on IMGT classification (Lefranc et al., 2015) and (Swanson, 1984)). Refer
to the legend for relevant colouring schemes in various subplots. (Note: clusterings and tSNE
plots were generated using MATLAB R2017a (The Mathworks, Inc., 2017))
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• Hydrogen donor or acceptor atom (none/donor/donor and acceptor/acceptor)

• Chemical (aliphatic/basic/amide/acidic/sulfur/aromatic/hydroxyl)

and the below scheme by Swanson (1984):

• Volume and exposure (small/large/outer/inner)

Figure 6.13(b)-(g) all show the same two-dimensional tSNE-visualisation of amino acids
from MMLSUM, but each subplot colours the amino acids differently, based on the above
listed widely-used amino acid classification schemes. These different schemes encompass the
hydropathic character of amino acids, their charge, their polarity, their donor/acceptor roles in
forming hydrogen bonds, their size and propensity for being buried/exposed, and their chemical
constitution.

In Figure 6.13(b)-(f), the visualisation yields clearly separable amino acid groups on tSNE’s
2D embedding of MMLSUM. In Figure 6.13(g) which deals with the classification based on the
chemical characteristics of amino acids (as per IMGT (Lefranc et al., 2015)), the classes are
mostly well-differentiated, barring a few outliers that include Histadine (H), Cysteine (C) and
Asparagine (N) – Note that H and C are also outliers in the hierarchical clustering (cf. Figure
6.13(a)). See Appendix B for tSNE plots of the other existing substitution matrices. Amidst
some variations, they all capture most of the amino acid groupings in general.

6.5.2 Amino Acid Divergence

Looking at the expected change trend displayed by the MMLSUM matrix (See Figure 6.10
or 6.14(a)): Previous studies (Rost, 1999) have shown that protein sequence relationships are
most reliable when their sequence identity is > 40% (or the expected amino acid change is
< 60%). This corresponds approximately to the evolutionary time t ∈ [1, 100] of MMLSUM.
The ‘twilight zone’ of sequence relationships has been characterised by relationships sharing
[20 − 35]% sequence identity (or [65 − 80]% change). This corresponds approximately to the
range t ∈ [125− 200] of MMLSUM. Expected change of 90% is reached at t = 400, which then
increases very slowly thereafter (∼ 94% change at t = 1000).

6.5.3 Insights on Matched Block Lengths and Gap Lengths

Unique to the MML protein alignment framework introduced in this thesis is the unified treat-
ment of substitutions and gaps via time-parameterised Dirichlet models (See Chapter 5). §6.3.2
derived a set of 1-simplex and 2-simplex Dirichlet models for evolutionary time t ∈ [1, 1000]
under the newly inferred matrix, MMLSUM. (Recall Figure 6.2 which visualises those models
as a function of evolutionary time). These Dirichlet models enable the analysis of expected
matched block lengths and gap lengths in protein alignments, as a function of evolutionary
time (Note: This is in the same way as we previously analysed for PAM Markov model in
§5.3.5).

As previously explained in Chapter 5, the Dirichlet distributions model time-specific state
transition probabilities of the alignment three-state machine over match (m), insert (i), and
delete (d) states. Accordingly, there are nine transition probabilities involved in the align-
ment three-state machine (Figure 4.1), of which three are free (Pr(m|m), Pr(i|i) and Pr(m|i)),
and the remaining dependent. In the three-state machine, the probability of moving from a
match state to another match state (Pr(m|m)) controls the run length of any matched block in
an alignment. The expected value of this run length, a geometrically distributed variable, is
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Figure 6.14: (a) Expected change of amino acids under the MMLSUM’s model as a function
of divergence-time parameter t (b) The variation of Pr(m|m) when derived from the mean of
the inferred time-dependent Dirichlet distributions accompanying MMLSUM (Note: the mean
can be taken as the expected value under each Dirichlet. They were smoothed as in the plot,
using smoothing spline under the curve fitting tool in MATLAB R2017a (The Mathworks, Inc.,
2017)) (c) Similarly, the variation of Pr(i|i) estimate with t. The divergence time parameter
t is plotted in the range [1, 600], beyond which the amino acids have near-converged to the
stationary distribution of MMLSUM.

given by 1
1−Pr(m|m)

. Also, the value 1 − Pr(m|m) gives the probability of a gap (i.e. a block of

insertions or deletions of any length) starting at a given position in an alignment.

Figure 6.14(b) plots the values of Pr(m|m) derived from the mean values of the inferred
Dirichlets for the m state. We observe that it remains nearly a constant (Pr(m|m)= 0.9958 on
average) in the range of t ∈ [1, 40]. This value corresponds to an expected run length of ∼ 238
amino acids per block of matches. Sequence-pairs whose time parameter is in that range are
closely-related, with > 67% amino acids expected to be conserved (cf. 6.14(a)) The probability
of opening a gap (1 − Pr(m|m) = 0.0042) for sequence-pairs in this range is extremely small.
Next in the range t ∈ [40, 300], Pr(m|m) decreases linearly with t. Comparing this range in the
expected change of amino acids, we can see that it drastically increases from ∼ 32% to ∼ 87%.
This correlates with the expected length of match-blocks dropping from 238 amino acids to
about 13. Further, for t ≥ 300, Pr(m|m) decreases only gradually.

Similarly, the free parameter Pr(i|i) (equivalent to Pr(d|d) in the symmetric alignment
state machine) controls the run lengths of indels. Figure 6.14(c) gives values of Pr(i|i) derived
from the mean values of the inferred Dirichlets for the i state. In the range t ∈ [1, 50], Pr(i|i)
is noisy as the probability of observing a gap is small. Hence, there are only few observations
of gaps from which to estimate this parameter. However in the range of t ∈ [50, 400], Pr(i|i)
grows from 0.5248 to about 0.8431, beyond which the probability flattens out at about 0.8759
on average (expected gap length 1

1−Pr(i|i)
=∼ 8 amino acids). The change of Pr(m|i) with t

mirrors the behaviour of Pr(i|i). (Note, Pr(i|i) + Pr(m|i) + Pr(d|i) = 1 and Pr(d|i) remains
very small).

6.5.4 Functional Similarity Analysis

This section presents a complementary analysis on how functional similarity correlates with the
evolutionary time between two proteins under the MMLSUM model of amino acid substitu-
tions. Taking the main benchmark of 59,092 SCOP domain pairwise alignments (SCOP2), this
study made use of the similarities between Gene Ontology (GO) (Ashburner et al., 2000; Gene
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Ontology Consortium, 2004) tags of those protein domains as indicators of their functional
similarity.

GO provides function annotations in terms of Biological Process, Molecular Function and
Cellular Component. Biological Process (BP) is a higher level process, overarching multiple
Molecular Functions (MF) that are carried out by proteins. Cellular Component (CC) refers
to the location of a protein in action with respect to the cellular structure. For instance,
the hemoglobin alpha subunit is annotated with the following GO tags: ‘oxygen binding’ and
‘oxygen carrier activity’ under MF; ‘oxygen transport’ and ‘receptor-mediated endocytosis’
under BP; and ‘cytosol’, ‘extracellular exosome’ under CC.

In this analysis, the GO tags of all protein domains in the SCOP2 benchmark were down-
loaded at first. However, there were some domains for which the tags were missing and thus,
not all domain pairs could be included in the study. Only those where both domains have one
or more of the above categories tagged in the GO database were considered. This resulted in
37,201 pairs for the exploration of functional similarity at the level of BP, with 48,215 pairs at
the MF level, and 31,594 at the CC level.

The function similarity between two GO term lists (domain1 GO terms ~x versus domain2
GO terms ~y) can be computed using their cosine similarity:

Cosine Similarity (~x, ~y) =
x.y

||x||||y||
.

Figure 6.15 illustrates how the measure changes with evolutionary time.

The observations independently agree with MMLSUM’s behaviour in reaching the equi-
librium state with respect to the evolutionary time t (Recall Figure 6.9). As expected, the
functional similarity measure decreases when the domains evolve further away from each other.
More closely related proteins tend to have a similar set of functions; a trivial observation implied
by the higher cosine similarity values that are closer to 1. However, values of t below 100 still

Figure 6.15: Cosine similarity between the Gene Ontology term vectors of protein domain
pairs in the SCOP2 alignment benchmark, plotted against the evolutionary time parameter t of
MMLSUM
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seem to permit flexibility in acquiring different functions. Afterwards there is a clear curve of
exponential decrease in functional similarity, reaching a somewhat noisy steady state. Beyond
t = 600, the trend disappears, suggesting that, there can be many different functions acquired
when domains have heavily diverged. This poses a practical upper limit on the applicability
of the substitution matrix MMLSUM. (Note: Domain pairs got spread into only 962 discrete
evolutionary time (MMLSUM-t) bins (38 time points are absent in the range [773, 998]).

Interestingly, studying the ‘phylum’ (taxonomic rank) of each domain reveals the divergence
of function from another point of view. Analysing the proportion of SCOP2 domain-pairs that
both belong to the same phylum by binning their inferred time parameters using MMLSUM,
it was found that 92.3% of the domain-pairs whose inferred time parameters are in the range
t ∈ [1, 50] belong to the same phylum. Between t ∈ (50, 100] this proportion falls to 53.5%.
Roughly a similar proportion of 50.4% can be observed for values of t ∈ (100, 200]. Between
t ∈ (200, 300] and t ∈ (300, 600], the number drops more drastically to 34.1% and 32%, respec-
tively.

This concludes the analysis of the newly inferred MMLSUM Markov matrix of amino
acid substitutions. The MML protein alignment framework introduced in Chapter 4 can
now incorporate this substitution model in concert with its optimal evolutionary-time-
parameterised Dirichlet models to align two protein sequences.

The following section concludes this chapter by presenting an example protein alignment
generated under the MML protein sequence alignment framework with the new MMLSUM
Markov matrix of amino acid substitutions alongside its evolutionary-time-parameterised
three-state machines (based on the newly inferred Dirichlet models). Recall the optimal
alignment model (§4.1) and marginal probability model (§4.2) discussed in Chapter 4. Out
of curiosity, let us compare two interesting viral proteins that have been receiving attention
in the year 2020 due to the ongoing global pandemic situation.

6.6 MML Sequence Alignment of an Interesting Pair of

Proteins

Consider the alignment between Spike glycoproteins of the Human SARS coronavirus (SARS-
CoV – PDB ID: 5WRG 1 (Gui et al., 2017)) and SARS coronavirus 2 (SARS-CoV-2 – PDB ID:
7JZL 1 (Cao et al., 2020)) under the MML framework. The spike glycoprotein resides in the
viral envelope of the coronavirus and initiates viral entry (and in turn infection) via host-cell
attachment, binding to a host-cell receptor, and mediating membrane fusion of host-cell and
virus (Gui et al., 2017). The below inferred optimal alignment model and marginal probability
model clearly imply the close evolutionary relationship between the SARS-CoV (first appeared
in 2003) and SARS-CoV-2 (novel coronavirus, first appeared in December 2019).6

The 5WRG 1 is an amino acid sequence of 1203 residues, while 7JZL 1 is of length 1288.
Below lists the statistics resultant from running an optimal alignment and marginal probability
based alignment under the MML framework.

6Source of dates: World Health Organisation https://www.who.int/ith/diseases/sars/en/ and https://www.who.

int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/.

https://www.who.int/ith/diseases/sars/en/
https://www.who.int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/
https://www.who.int/csr/don/06-november-2020-mink-associated-sars-cov2-denmark/en/
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Table 6.9: Associated three-state machine parameters. (Note: Blue highlighted are the three
free parameters of the state machine as illustrated by Figure 4.1. Others are dependent param-
eters.)

Parameter EstimateOptimal EstimateMarginal

Pr(m|m) 0.996 0.996
Pr(i|m) 0.002 0.002
Pr(d|m) 0.002 0.002
Pr(i|i) 0.453 0.450
Pr(m|i) 0.381 0.381
Pr(d|i) 0.166 0.169
Pr(d|d) 0.453 0.450
Pr(m|d) 0.381 0.381
Pr(i|d) 0.166 0.169

The null model message length: INULL(〈S,T〉) 10545.862 bits
The optimal alignment model message length I(A∗, 〈S,T〉): 7586.996 bits
Compression (∆IOptimal) 2958.870 bits
The marginal probability model message length IMarginal(〈S,T〉): 7535.418 bits
Compression (∆IMarginal) 3010.440 bits

• Inferred optimal evolutionary time (MMLSUM-t) = 27

• Inferred average evolutionary time (MMLSUM-t) = 24

Both models give positive compression. The inferred optimal evolutionary time suggests that
the expected change of amino acids is about ∼ 23.25% (i.e. these proteins are not very distant).
On the other hand, the average t = 24 refers to an expected change of about ∼ 21.02%. Table
6.9 lists the associated three-state machine parameters for t = 27 and t = 24. Figure 6.16
visualises the marginal probability based alignment landscape of the two SARS viral proteins.

BC
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Figure 6.16: Marginal probability based alignment landscape for the Spike glycoproteins of the
SARS-CoV and SARS-CoV-2 viruses
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Chapter 7

Unified Protein Sequence-Structure
Alignments

“All models are wrong, but some are useful”

– George E. P. Box

Previous chapters have developed the MML framework for protein sequence alignment along
with a complete set of statistical models accompanying it. In this chapter, a proof-of-concept
approach is presented to combine both sequence and structure information of proteins when
searching for the best alignment relationship between them. The objective here is to infer
a sequence-structure alignment by building on the outcomes presented in the thesis of Col-
lier (2016), which provided an MML framework and separate models to address the structure
alignment problem (i.e. solely using 3D coordinate information of atoms in proteins). To unify
sequence and structure sources of information, this chapter uses a Näıve Bayes approach for
combining sequence-based models (developed in this thesis) and structure-based ones (devel-
oped by Collier (2016)) to generate sequence-structure alignments of proteins.

7.1 Background

Combining sequence and structure sources of evidence to generate alignments is a computa-
tionally challenging task that requires, amongst other considerations, consistency within the
models that account for both pieces of information. There have been previous attempts to
utilise protein sequence and structure information jointly in protein alignment, for example in
the work of Sali and Blundell (1990); Jones et al. (1992b); Levitt and Gerstein (1998); Buchan
and Jones (2017). However, the field lacks a clear consensus on how to score and evaluate
alignments that combine these two sources (Smith et al., 1997). Further, Yona and Levitt
(2000) emphasise that:

“To achieve maximum sensitivity and benefit from both structures and sequences,
we need to combine these two metrics. However, since these measures are based on
different considerations it is not clear how one should judge scores that are assigned
by either metric... Without knowing the relation between the two metrics it is hard to
develop a notion of ‘close’ and ‘far’ which is consistent with both metrics. Moreover,
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it is not clear how statistical measures that are based on different protein features
can be combined and transformed to a single scale.”

Previous approaches have relied on assessing an independently generated sequence align-
ment and a structure alignment together, to arrive at a conclusion regarding the evolutionary
relationship between the two proteins of comparison. A notable unification approach was pre-
sented by Levitt and Gerstein (1998) for assessing statistical significance of alignments based on
the P-value/E-value statistic. As explained in §2.4.2, P-value statistic informs the probability
of observing an alignment score of at least a certain value, under a null distribution of optimal
alignment scores in the context of statistical significance testing. Such a null distribution can be
estimated over unrelated protein alignments or artificially generated random protein sequence
alignments.

For local, ungapped sequence alignments, the distribution of optimal alignment scores was
reported by Karlin and Altschul (1990) to be a continuous probability distribution known as
Gumbel, coming from the family of extreme-value distributions. Levitt and Gerstein (1998)
separately confirmed that optimal structure alignment scores also follow an extreme-value dis-
tribution. Later, Bastien and Maréchal (2008) observed similar behaviour for global pairwise
alignment scores as well.

The commonly used statistic (mostly in sequence database search of homologous proteins
for a query protein) is the E-value. It is the expected number of random alignments that display
a score greater than the particular score value under test. As mentioned previously in §2.4.2,
the count of alignments with at least some threshold alignment score S is Poisson distributed.
Thus, E-value is the mean under the Poisson distribution, computed as k ·m · n · exp(−λS),
where m and n are the query sequence length and subject sequence length, respectively, and
k, λ are parameters to be estimated (Karlin and Altschul, 1990). The corresponding P-value is
simply 1 − exp(−E-value). (Note: When it comes to database search (see§ 2.4.4), the length
term n can simply be assigned the length of the entire database as a single long sequence).1

The E-value computation is different across different programs. For instance, BLAST
(Altschul et al., 1990) relies on pre-computed values for k, λ specific for a given substitu-
tion scoring matrix and gap penalties, whereas FASTA (Pearson and Lipman, 1988) fits an
extreme-value distribution for each sequence query, by comparing it against each sequence in
the database. This process does not depend on an artificial null distribution, yet involves an
effort to exclude protein pairs that are related. Nevertheless, it is a better strategy for dealing
with composition bias of a query sequence (if present any) (Levitt and Gerstein, 1998).

As suggested above, the unification approach used by Levitt and Gerstein (1998) is note-
worthy. Their experiment took a collection of SCOP domain pairs related at superfamily level
(as true positives), and ran (1) standard sequence alignment (using Smith-Waterman local
alignment under fixed gap penalties and BLOSUM50 substitution matrix), and (2) structure
alignment (using a DP based approach), separately. Then they fitted a probability density
function for sequence alignment scores over all-versus-all pairs that are true negatives. The
same exercise was performed for structure alignment scores as well. Accordingly, the E-value
statistics were computed for both types of alignment score. Levitt and Gerstein (1998) have
compared sequence alignment significance against structure alignment significance using the
resultant E-values, and identified a statistical significance threshold of 1% which agrees for
both types of alignments. With this work, they substantiated E-value as a common ground to
evaluate alignment scores across different programs (Levitt and Gerstein, 1998). This approach

1Details on these statistics are given by The National Center for Biotechnology Information at https:

//www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.

https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html


7.2. MML BASED SEQUENCE-STRUCTURE ALIGNMENT 143

has been later extended for classifying protein in terms of both their sequence and structure
(Yona and Levitt, 2000).

Other approaches have also tried to incorporate sequence and structure. Recently, Fallaize
et al. (2020) proposed a Bayesian approach that utilises a prior distribution for gaps in an
alignment based on the sequence order to combine with the coordinate-based structure align-
ment. A related, yet a separate problem is protein threading, which aims to align an amino
acid sequence to some known protein three-dimensional structure (Jones et al., 1992b). This
is important for homology modelling where a computational search is performed to find the
template structure (present in a library of known structures) that closely represents the true
structure of a given sequence with unknown structure. Various scoring functions are being used
in protein threading to accommodate both sequence and structure information such as amino
acid residue-residue contacts and residue-site specific structural/energy characteristics (Bryant
and Altschul, 1995; Buchan and Jones, 2017). A consistent unification of various sequence and
structure level details can greatly assist protein threading. Lathrop et al. (1998) presented a
Bayesian method for deducing the most probable alignment of a given sequence to a given core
structure, with the aim of selecting the best core structure in a library. This is an instance of
unifying core structure recognition and sequence-structure alignment.

Another effort is the recent version of MAFFT multiple sequence alignment tool called
MAFFT-DASH (Rozewicki et al., 2019) which integrates sequence and structure using a pair-
wise structural alignment database called DASH. Two metrics: a residue-level structural simi-
larity (based on the Gaussian function of the distance between Cα atoms of amino acid residues),
and a domain-level similarity using a linear combination of sequence and structure based terms,
are being used for this purpose.

7.2 MML based Sequence-Structure Alignment

Here we combine the MML framework and statistical models for protein sequence alignment
(presented in this thesis) with the MML framework and models for protein structure alignment
presented in the thesis of Collier (2016). Since these two works quantify the relationship between
protein sequences and structures respectively in terms of strictly-additive Shannon information
content, they can be combined in a straightforward fashion by adding the encoding lengths of
sequence and structure data together. The below describes this in detail.

7.2.1 MML based Protein Structure Alignment

The thesis of Collier (2016) introduced the MML framework for protein structure alignment.
Although the general framework has analogous information-theoretic considerations discussed
in Chapter 4 (i.e. a well-defined structure null model and structure alignment model), the
details between sequence models and structure models including the methods to search for the
best alignment are necessarily and completely different.

Given a pair of proteins 〈S,T〉, let the ordered sets of Cα atomic coordinates for each
residue of each linear amino acid chain be denoted by Sstruct = {~s1, ~s2, . . . , ~s|S|} and Tstruct =

{~t1,~t2, . . . ,~t|T|}.

Structure null model refers to an independent encoding of these S and T structural coor-
dinate data, with a total message length:

INULL(〈Sstruct,Tstruct〉) = INULL(Sstruct) + INULL(Tstruct) bits (7.1)
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Null encoding accounts for communicating the coordinates of any structure. In the original
formulation of the null model for structures, Collier et al. (2014) used a uniform-direction
encoding, which was later superseded by a mixture model of Kent distributions proposed by
Kasarapu (2015). The encoding under the null model first states the count of Cα atoms in
the structure over an integer code. Then the coordinates are encoded as follows. The (x, y, z)
coordinate of each Cα is represented in a spherical coordinate system. Along the backbone of
a linear amino acid chain, two consecutive Cα atoms are known to be distant on an average
of 3.8Å. Using this information, the null model encodes any Cα coordinate given the previous
three Cα coordinates, by transmitting the associated radius over a normal distribution with
inferred mean and standard deviation, followed by its direction (relative to the previous three
coordinates in a canonical orientation) using the mixture model of Kasarapu (2015) defined on
the surface of a unit sphere.

Structure alignment model explains the atomic coordinate data of the two proteins ac-
cording to some structure alignment hypothesis Astruct that describes how Cα atoms are related
between the two proteins. The encoding lengths account for the alignment hypothesis Astruct

and the Cα (x, y, z) coordinates of Sstruct and Tstruct, yielding the total message length of the
form:

I(Astruct, 〈Sstruct,Tstruct〉) = I(Astruct) + I(〈Sstruct,Tstruct〉 |Astruct) (7.2)

= I(Astruct)︸ ︷︷ ︸
First part

+ INULL(Sstruct) + I(Tstruct|Sstruct,Astruct)︸ ︷︷ ︸
Second part

bits (7.3)

The first part accounts for encoding an alignment hypothesis as a three-state string over the
match (m), insert (i) and delete (d) states using an adaptive Markov encoding scheme (and
does not infer these using MML, as done in this thesis). The second part first sends Sstruct using
the null model, followed by an encoding for Cα coordinates of Tstruct given the Cα coordinates
of S and the alignment Astruct, using probability distributions that account for local and global
spatial similarities between the matched coordinates. The coordinates under insertion and
deletion are stated using the null model (Collier, 2016).

Finally, any structure alignment hypothesis Astruct can be evaluated under the structure
alignment model with respect to the structure null model, using the log odds posterior ratio
that results in a compression statistic under the MML criterion as:

∆Istruct = INULL(〈Sstruct,Tstruct〉)− I(Astruct, 〈Sstruct,Tstruct〉) bits

If ∆Istruct > 0, we accept the structure alignment model, otherwise it is rejected.

Search method for the optimal alignment: Upon defining the above alignment model
and null model for a given pair of proteins, the approach of Collier (2016) aims to find the
optimal structure alignment using a two-phase heuristic search approach.

Phase 1 : Seed alignment generation
This involves an approach (Konagurthu et al., 2015) to produce a set of Maximal Fragment
Pairs (MFP). An MFP is a maximally extended pair of substrings amongst the two protein
structures that locally superposable within a threshold of RMSD value. These MFPs are
filtered such that, each MFP is jointly superposable with at least two other MFPs in the
filtered set. Next, MFPs are clustered into groups on which a heuristic seed alignment is
generated for each cluster.



7.2. MML BASED SEQUENCE-STRUCTURE ALIGNMENT 145

Phase 2 : Local search alignment model optimisation
This is a refinement step where, for each seed alignment, an EM based search is performed
to minimise the total message length of the alignment model (i.e. I-value) by perturbing
the alignment at each iteration.

7.2.2 Näıve-Bayes Unification

This section discusses the integration of MML based amino acid sequence models with the
MML based 3D structure models under the Näıve-Bayes method. Recalling the Bayes formula
in §3.1.2 in its joint probability form, we can define the joint probability of two proteins 〈S,T〉
and their alignment A as follows:

Pr(A, 〈S,T〉) = Pr(A) · Pr(〈Sseq,Tseq〉 | A) · Pr(〈Sstruct,Tstruct〉 | A)

This enables a consistent combination of the two information sources under a unified alignment
model, with a unified I-value defined by:

I(A, 〈S,T〉) = I(A)︸ ︷︷ ︸
First part

+ I(〈Sseq,Tseq〉 |A) + I(〈Sstruct,Tstruct〉 |A)︸ ︷︷ ︸
Second part

bits (7.4)

Here, the first part accounts for the complexity of the alignment hypothesis A encoded as a
three-state string using the adaptive coding method (Collier, 2016).

On the other hand, the second part accounts for the sum of independent second part message
lengths resultant from Equation 4.1 (for sequence alignment) and Equation 7.2 (for structure
alignment). For the sequence related second part message, the MMLSUM amino acid replace-
ment matrix (inferred in Chapter 6) and UniProt proteome based amino acid null probabilities
are applied on matches and insertions/deletions described by the alignment A, respectively. For
the structure related second part message, the Cα coordinates are encoded using the approach
presented in Collier (2016).

Separately, the corresponding unified null model becomes:

INULL(〈S,T〉) = INULL(Sseq) + INULL(Tseq) + INULL(Sstruct) + INULL(Tstruct) bits (7.5)

with sequence null model estimates inferred on UniProt sequences (see §4.4), and the structure
null model described in Equation 7.1 to encode the Cα coordinates independently for each of
the S and T proteins.

Accordingly, the test of significance for some alignment A follows the same routine of
evaluating the compression gain ∆I, as the difference between the unified null model and the
unified alignment model. If the difference is positive, the alignment is accepted, otherwise it is
rejected.

Search for the optimal alignment: The above described unified alignment model is opti-
mised under the objective function given by Equation 7.4 using the two-phase heuristic search
procedure described by Collier (2016) summarised in the previous section. The alignment which
gives the shortest message length for unified alignment model, yielding the most compression
with respect to the unified null model message length (Equation 7.5), is chosen to be the optimal
alignment under this proposed MML framework of unified sequence-structure alignment.
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7.3 Results and Discussion

The following experiment establishes an initial attempt to validate the unified sequence-structure
alignment framework.

7.3.1 Experimental Setting and Data

The performance of the unified framework was evaluated over a set of 1000 randomly sampled
SCOP domain pairs across all SCOP classification levels: family, superfamily, fold, class and
decoy (not belonging to the same class), reported in the thesis of (Collier, 2016).

Mainly, there are 200 pivot SCOP domains with which, 200 unique SCOP domains from
each SCOP level are paired (i.e. a pivot domain P is paired with domain P1 in the same family,
domain P2 in the same superfamily, domain P3 in the same fold, domain P4 in the same class,
and domain P5 in a different class). Optimal alignments were generated for all 1000 domain
pairs under the MML structure alignment and MML sequence-structure alignment framework.

To understand this data from its sequence composition, we explore the marginal proba-
bility models for these 1000 protein domain pairs produced by the MML sequence alignment
framework described in this thesis. The framework utilises MMLSUM Markov model of amino
acid substitution in concert with the expected three-state machine parameter values under
the optimal Dirichlet models derived in Chapter 6. The applied null model of the framework
is the one inferred over UniProt protein sequences in §4.4.3. Figure 7.1 plots the amount of
compression gain each marginal probability model has achieved with respect to their sequence
null model (given in Equation 4.11) against their average evolutionary time t. The family level
relationships yield an average compression of 27.7451 bits under a mean evolutionary time of
t = 226.3150. The superfamily level relationships also display a positive average compression

Figure 7.1: Evolutionary time t versus compression (in bits) for 1000 SCOP domain pairs
aligned under the marginal probability model of the MML based protein sequence alignment
framework
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of 9.7266 bits. This signifies the potential of marginal probability model to identify distant evo-
lutionary relationships. The fold level nearly makes the cut with a 0.5513 average compression.
The class and decoy levels both show a negative average compression of −0.1900 and −1.2253
bits. This is desirable since in general, these SCOP levels are considered to be not reflecting
divergent evolutionary relationships.

7.3.2 Results for the Unified Sequence-Structure Alignment Frame-
work

This section analyses how sequence-structure alignment differs from structure-only alignment
(and clearly sequence-only alignment), by evaluating alignments for the above mentioned 1000
pairs of SCOP domains under the new unified framework, in comparison to those under the
structure-only framework (Collier, 2016). Figure 7.2 and Figure 7.3 illustrate SCOP-level-wise
box-plots of the compression gain/loss, alignment complexity (I(A) in bits), the Shannon infor-
mation content (I(A, 〈S,T〉) in bits), RMSD (in Angstroms (Å)) and coverage (i.e. the number
of matched amino acid pairs in the resultant alignment) of the 1000 alignments, separately for
both frameworks.

Looking at the median compression gain for the SCOP family level domains, we observe
an improvement of ∼ 13.7 bits using the unified framework compared to structure-only frame-
work. However, the superfamily and fold levels do not make much difference between the two
alignment types (i.e. Only ∼ 3 bits and ∼ 1.6 bits difference in their median compression
values, respectively). The superfamily level for unified alignment accounts for a median of
109.2295 bits, whereas that of structure only alignment produces a median of 112.2185 bits
compression. For class and decoy, there is a significant difference with unified alignment giving
a lesser compression than structure only alignment. It is favourable since they are known to be
representing unrelated pairs of domains.

Alignment complexity distributions provide an interesting observation; where unified align-
ments bear more complexity than structure-only alignments on average, across family, super-
family and fold levels, it then drops for fold and class levels.

RMSD value distribution in Figure 7.3 favours unified alignment with improvements to
RMSD values at fold, class, decoy level. This is explicable in terms of the coverage which has
dropped compared to other levels. The fold and class level pairs are expected to bear no direct
evolutionary relationship. However they can have similar local folding patterns which are likely
to be picked up by the unified framework in terms of their amino acid sequence similarities.
Consequently, matches made solely based on 3D coordinates could have been compensated for
by unaligned regions, such that the coverage decreases and RMSD increases. The superfamily
level statistics have not changed much. On the other hand, family level does not favour unified
alignment in terms of RMSD, as the median and mean have gone up. This may be due to a
trade-off between overall compression and RMSD.
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Figure 7.2: Results of structure-only alignments versus unified sequence-structure alignments
under the MML framework. Top row compares the two in terms of compression (in bits)
gained/lost with respect to their null models, shown as box-plots capturing the distribution of
quartiles, for each SCOP-level. Similarly, the middle row compares their resultant alignment
complexities, while the last row shows the distribution of their Shannon information content.
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Figure 7.3: Comparison between structure-only and sequence-structure alignments in terms of
their distributions of RMSD (top row) and coverage (bottom row), shown as box-plots for all
1000 domain pairs across the SCOP levels
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7.3.3 A Case Study

As a case study, let us examine a randomly chosen domain-pair from our dataset that belongs to
the same superfamily: d1nara and d1tvna. SCOP organises this pair under the superfamily
(Trans)glycosidases, a type of enzyme. The domain d1nara is a seed storage protein in a
plant species called Vicia narbonensis (known as the garden vetch). The domain d1tvna is
a Endoglucanase protein found in a marine bacterium called Pseudoalteromonas haloplanktis.
This section compares and contrasts the alignments of these highly-diverged proteins, generated
using the unified and structure-only frameworks. Note that the sequence framework under the
optimal alignment model infers their evolutionary time t under the MMLSUM substitution
matrix as 599, whereas the model using marginal probability gives an average t = 475. The
optimal alignment model does not yield positive compression, showing the difficulty of detecting
their sequence similarity signal. However, the marginal probability model is able to detect
that there exists some unspecified evolutionary relationship between them, with 11.7 bits of
compression.

Figure 7.4 shows the similarities and differences between the optimal alignments produced
by the MML structure-only and unified models. The reported unified alignment has a slightly
better fit (RMSD 3.89 Å) compared to structure-only alignment (RMSD 4.08Å), although the
unified framework’s alignment yields a coverage of 205 correspondences (i.e. matched amino
acids) compared to structure-only alignment coverage of 212 correspondences. Note, d1nara
and d1tvna have 289 and 293 amino acid residues in their chains, respectively.

Referring to their structure-only and sequence-structure alignments in Figure 7.4, only ∼
57% of the aligned regions agree to the same substrings within their three-state alignment
strings. The distinctions occur in the form alternative sequence matches and shifts in matches,
due to unaligning certain parts (appearing as inserted or deleted stretches of amino acids).
Figure 7.5 shows the subtle differences between the two types of alignments.

Focusing on the region highlighted by Figure 7.6, even though the superposed structural
segments are arranged in the same way, a closer look reveals subtle variations in their spatial

Figure 7.4: The similarities (yellow background) and differences (white background) between
structure-only and unified sequence-structure alignments between the two SCOP domains:
d1nara (S) and d1tvna (T).
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(a) (b)

Figure 7.5: Top row: superpositions of d1nara (in purple colour) and d1tvna (in green colour)
structures based on their optimal alignments produced by (a) structure-only, and (b) unified
sequence-structure methods. Bottom row shows the same corresponding superpositions high-
lighting the regions of differences as thick ribbons, while the similarities are shown with thin
lines. PyMOL (Schrödinger Inc., 2015) was used to render these molecular visualisations, and
SST (Konagurthu et al., 2012) to delineate secondary structures (helices and strands of sheet).

Figure 7.6: A region where alignments of the two SCOP domains: d1nara and d1tvna differ.
Blue highlighted amino acid stretch in d1nara is matched with red highlighted amino acid
stretch in d1tvna only by the unified alignment. Yellow highlighted are the regions that agree
between the two alignments.

arrangements. The unified alignment has matched the SLFTP region in the domain d1tvna

(highlighted in red) with SVIPK region in the domain d1nara (highlighted in blue). The
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Figure 7.7: Another region where the optimal structure-only alignment and unified sequence-
structure alignment of the two SCOP domains, d1nara and d1tvna, differ. These regions
within the two alignments have considerable differences in their patterns of matches and inser-
tions/deletions.

identical match of S is not surprising. The match between V (Valine) and L (Leucine) makes
sense since both are aliphatic residues. Next, the hydrophobic residue I (Isoleucine) can replace
F (Phenylalanine), another hydrophobic residue. Replacement between T (Threonine ) and P

(Proline) is also sensible since they both fall under the group of small amino acid residues.
Another significantly different region of alignment is highlighted by Figure 7.7. While struc-

ture alignment gives a higher coverage, unified alignment introduces several inserted and deleted
stretches of amino acids, resulting in a better fit between two alpha helices as noticeable from
the visualisation. Such difference signifies the importance of combining both amino acid se-
quence and structure information during protein alignment.

The preliminary results and discussion presented in this chapter establishes a proof-of-
concept for the potential in combining amino acid sequence and 3D structure information
when aligning two proteins. The consistent unification of these two sources of information
within the MML framework under a simple Näıve Bayes method opens up an avenue to
investigate more on its strengths to identify evolutionary similarities between proteins.

BC



Chapter 8

Conclusions and Future Directions

“...then there’ll be no more work and there’ll be perfect peace.
Really?

Yeah - that’s Entropy, man!

– Flanders & Swann (in their song ‘First
And Second Law Of Thermodynamics’ N ))

This thesis revisits the classical problem of protein sequence alignment, and addresses it using
the method of Minimum Message Length inference (Wallace, 2005) that links statistical in-
ductive inference with lossless data compression. Using this information-theoretic framework,
it learns a complete set of statistical models explaining amino acid substitutions, insertions
and deletions. In revisiting this problem, this thesis attempts to continue the rigorous lines of
research initiated by Allison and Wallace (1994); Allison et al. (1992b); Yee and Allison (1993)
for DNA sequence alignment, and later by Eddy (1998) for protein alignment via pair Hidden
Markov Models.

Specifically, this thesis formulates a Bayesian framework that permits an objective compar-
ison of alignments between protein sequences in Shannon information terms. The framework
directly addresses the necessary complexity versus fit trade-off when deciphering alignment
relationships, and does so by learning parameters unsupervised and thereby avoiding ad hoc
choices for them. An interesting feature of this framework is its ability to provide ways to explore
closely-competing (alternative) alignments, especially over the marginal probability ‘alignment
landscapes’ (Chapter 4). The thesis has also unified the statistical models explaining amino acid
insertions and deletions, with those accounting amino acid substitutions (Chapters 5). Further,
the thesis has examined a set of widely-known substitution models introduced in the past four
decades. This is a revisit to substitution modelling for identifying strengths and weaknesses of
existing models with the aim to improve them. It infers a new set of Markov models of protein
evolution over several protein structural alignment benchmarks, with the purpose of improving
the alignment framework’s ability to detect significant sequence similarities (Chapter 6). A
unique characteristic of this inference is that it incorporates both matches and gaps between
protein sequences. This Markov model inference procedure is benchmark-agnostic and can be
applied to learn average amino acid substitution patterns across any protein alignment bench-
mark. Finally, an effort is made to unify sequence information with structure information for
generating sequence-structure alignments under the MML framework. For this, the MML se-
quence models introduced in this thesis are integrated with MML structure models introduced
by the thesis of Collier (2016) (Chapter 7).

Overall, the results and insights presented here contribute to an improvement in solving the
classical problem of protein sequence alignment, addressing key shortcomings and limitations
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in the domain as highlighted in §2.5. As Habermann (2016) pointed out, presently, there does
not exist a reliable statistical framework nor robust methods, especially for remote evolution-
ary relationship detection. Levy Karin et al. (2018) re-affirms that the field still has scope for
growth. This thesis is therefore an attempt in that direction.

All models developed and implemented in this thesis follow a strictly probabilistic approach.
The statistical framework of MML provides a consistent ground on which alignment models
are evaluated. MML keeps the evaluation honest, with all parameters, their complexities
and uncertainties inferred and handled explicitly. This includes the statement of all param-
eters and their precision, for example protein sequence and alignment lengths, evolutionary
time parameter, three-state machine parameters etc. This consideration is important to
address any inference problem. The presented framework is extendable, where the models
across multiple sources of information can be integrated with existing models due to the
additive property of information.

To conclude, a couple of future directions of research building on this thesis are briefly
discussed below.

Multiple Protein Sequence Alignment

Quoting Arthur Lesk “two homologous sequences whisper...multiple alignment shouts out loud”
(Gusfield, 1997). Thus a major direction would be an extension of the MML framework to
facilitate multiple sequence alignment. This requires considerable thought and effort, even when
using the common progressive alignment approach of Feng and Doolittle (1987). However, a
good starting point is the previous work of Allison et al. (1992a) addressing the phylogenetic
tree inference and computation of multiple alignments using MML. Many considerations will
have to be extended for this problem. For example, the relationship is no longer a single three-
state alignment string. Instead, It can be a collection of three-state alignment strings with
respect to one chosen sequence in the set of multiple sequences for which we aim to find an
optimal alignment. A suitable method is to formulate this as an evolutionary tree hypothesis,
in which case the tree topology, all parameters and their associated complexities have to be
concretely defined and inferred under the MML criterion.

Exploring the Patterns of Conservation of Sequence and Structure in
Evolution

Better understanding of the relationship between sequence conservation and structure conserva-
tion is an direction of future exploration using the MML models handling sequence, structure
and sequence-structure source of information. Thus, it will be useful to explore quantita-
tively and qualitatively the differences between sequence alignment, structure alignment and
sequence-structure alignment, and study their consensus (in terms of shared correspondences)
and identify the point where they deviate from each other. Mainly, this will extend the prelim-
inary exercise discussed in Chapter 7. Further, the MML sequence alignment framework can
be applied to infer a dictionary of sequence-structure determinants (Lesk et al., 2018).

BC



Appendix A

Information on Proteome Data Sources

Table A.1: Information on proteomes across Eukaryota, Bacteria and Archea

Organsim Uniprot ID Description
Escherichia coli (strain K12) UP000000625 Serves for suppressing harmful bacterial

growth and synthesising vitamins in
the body

Homo sapiens UP000005640 This is us, the humans
Arabidopsis thaliana UP000006548 A flowering plant; the first plant genome

to be sequenced
Mus musculus UP000000589 House rat, the second mammal genome

to be sequenced
Drosophila melanogaster UP000000803 Fruit fly
Saccharomyces cerevisiae (S288c) UP000002311 Unicellular Fungus
Methanocaldococcus jannaschii UP000000805 Strict anaerobic organism found in

deep sea
Plasmodium ovale wallikeri UP000078550 Causes tertian Malaria
Clostridium tetani UP000001412 A soil bacterium that causes Tetanus;

It has an AT rich genome
Mycobacterium tuberculosis UP000001584 A pathogenic bacterium that causes

Tuberculosis; It has a GC rich genome
Bacillus subtilis (strain 168) UP000001570 Harmless bacterium found in soil
Lactococcus lactis (strain IL1403) UP000002196 A bacterium used in milk industry

for cheese production; It has an AT rich
genome

Streptomyces coelicolor UP000001973 A bacterium with an ability to produce
metabolites including antibiotics; It has a
GC rich genome

∗based on UniProt (UniProt Consortium and others, 2017) and Yu et al. (2003)

;<
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Table A.2: Information on viral proteomes

Organsim Uniprot ID
Paramecium bursaria Chlorella virus 1 (PBCV-1) UP000000862
Bacillus virus G UP000009273
Cafeteria roenbergensis virus (strain BV-PW1 (CroV)) UP000029781
Emiliania huxleyi virus (EhV-86) UP000000863
Human SARS coronavirus (SARS CoV) UP000000354



Appendix B

Amino Acid Residue Clusters with
tSNE Plots

Figure B.1: tSNE plots of different substitution matrices reflecting amino acid clusters based
on their hydropathy as classified by Lefranc et al. (2015)

;<
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Figure B.2: tSNE plots of different substitution matrices reflecting amino acid clusters based
on their charge as classified by Lefranc et al. (2015)



159

Figure B.3: tSNE plots of different substitution matrices reflecting amino acid clusters based
on their polarity as classified by Lefranc et al. (2015)
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Figure B.4: tSNE plots of different substitution matrices reflecting amino acid clusters based
on their hydrogen donor or acceptor status as classified by Lefranc et al. (2015)
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Figure B.5: tSNE plots of different substitution matrices reflecting amino acid clusters based
on their volume and exposure as classified by Swanson (1984)
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Figure B.6: tSNE plots of different substitution matrices reflecting amino acid clusters based
on their chemical properties as classified by Lefranc et al. (2015)
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