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Abstract

In this data pervasive world, the efficient and accurate modelling of data is crucial to support reliable
analyses and to improve the solution to related problems. In order to describe the given data, the
problem of selecting a suitable model has to be carefully addressed. Traditional approaches to the
problem of optimal model selection have relied predominantly on the number of model parameters
rather than the actual parameters themselves. This limits the ability of traditional methods to cor-
rectly distinguish among models that, while being of different type, have the same number of model
parameters. In order to address the problem of model selection satisfactorily, this thesis explores the
Bayesian information-theoretic principle of minimum message length (MML). The inference frame-
work based on the MML principle enables the optimal selection of models by using the constituent
parameters to better balance the trade-off between the model’s complexity and its goodness-of-fit to
the data. The core of this thesis explores the MML-based inference of some of the commonly used
probability distributions whose parameters have not yet been characterized and of mixtures of these
probability distributions. The models of these probability distributions allow for accurate modelling
of data in the Euclidean space and data that is directional in nature. These probabilistic models and
their mixtures have widespread uses in statistical machine learning tasks. In this context, we have
developed a general purpose search method to determine the optimal number of mixture components
and their parameters that describe the given data in a completely unsupervised setting. The use
of the MML modelling paradigm and our proposed search method is explored in detail on a variety
of real-world data, specifically on directional text data and on the spatial orientation data of protein
three-dimensional structures. Further, mixtures of directional probability distributions have facilitated
the design of reliable computational models for protein structural data. Furthermore, the inference
framework has been used for concise representations of protein folding patterns using a combination of
non-linear parametric curves. The results of this work have a wide-variety of important uses including
direct applications in protein structural biology.
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Chapter 1

Introduction

Data forms the basis of every aspect of our society. The number and direction of vehicles travelling
on a particular road to the three-dimensional (3D) positions of the atoms in a protein structure are
all potential sources of data. Analyzing this data can help us gain insights that, in turn, can enable
us to improve the solution to related problems, like increasing the flow of vehicles along the road or
finding similarities between two 3D protein structures. In order to support any analysis, data is usually
described by a mathematical formula that is characterized by some parameters. This description of the
data is referred to as a model. In general, the models adopted to describe the data are approximations
of the, often unknown, true model.

As explained in Oliver and Baxter (1994), to describe some observed data, a set of models is
usually considered. This set consists of model classes, where a model class is defined as a collection of
models that have the same parametric form, including the same number of parameters. As per this
definition, Oliver and Baxter (1994) consider, for example, the cubic polynomials to be of a different
model class as compared to the quadratic polynomials. The union of all such model classes (in this
case, polynomials of varying degree) make up the entire collection of models. A model is defined as a
particular instance of this collection, that is, one whose parameters are fully specified.

In order to describe the data, a suitable model needs to be selected. This includes selecting a
model class as well as the parameters that uniquely identify a model within that model class. The
selection of a particular model refers to inductive inference or learning from observed data (Wallace,
2005). The model is an assertion on the nature of the observed data and inductive inference results in
a probability value for the model given the data. The inductive inference methodology is usually based
on statistical learning theory and, hence, referred to as statistical inference. The core of statistical
inference relies on evaluating the probability of occurrence of a model and its associated parameters
given the data, taking into account any prior knowledge that we may have about the data. When the
data is described using probability distributions, model selection refers to the problem of inference of
the parameters that characterize those distributions.

The notion of what constitutes a suitable model is dependent on the complexity of the model
and the its ability to describe the data. The model’s complexity is typically characterized in terms
of a function involving the model’s parameters (see below). The model’s ability to describe the data
is defined in terms of the error associated with fitting the model to the data. This is commonly
referred to as the goodness-of-fit. A model that fits the observed data with minimal error has a high
goodness-of-fit. A model with increased complexity generally improves the goodness-of-fit to the data.
Naturally, there is a cost-benefit trade-off associated with selecting a suitable model.

In practice, there are often several candidate models that might be suitable and, therefore, their
suitability, that is, their complexity and goodness-of-fit to the data needs to be carefully assessed and
compared. In order to further motivate the problem of model selection, consider the modelling of the
Iris data using Gaussian mixtures shown in Figure 1.1 (detailed analysis is presented in Section 5.5.6).
A mixture model contains K component distributions, where each K-component mixture corresponds
to a model class. Figure 1.1(a)-(c) shows three models, each from a different model class, corresponding

1
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Figure 1.1: Example motivating the problem of model selection: which mixture model should be
selected?

to the K-component mixtures for K = 2, 3, and 4 respectively. Other mixture models can be obtained
by varying K. Each K-component mixture has an associated complexity and a goodness-of-fit value.
From Figure 1.1, it is not immediately clear as to which model should be selected, as all the three
models seem to be suitable. Hence, the problem of model selection is an important one as any future
analysis will be based on the selected model.

Several criteria have been formulated to achieve a trustworthy balance between the complexity
of the model and its goodness-of-fit to the data. In many applications, statistical hypothesis testing
based on the likelihood ratio test is employed in model selection (see Section 2.3.1). The practical
implementation of the likelihood ratio test involves its approximation by the chi-squared test (Wilks,
1938). This approximation is only valid for large sample sizes and for nested model classes (that
is, when one of the models is a specific case of the other). These constraints limit the usage of the
likelihood ratio test for testing varied model classes. This is why information-theoretic based criteria
such as the Akaike information criterion (Akaike, 1974), Bayesian information criterion (Schwarz,
1978), and minimum description length (Rissanen, 1978). are widely used in model selection (see
Chapter 2).

These information-theoretic criteria assign a score to a model based on its complexity and its
goodness-of-fit to the data. Hence, model selection using these criteria is achieved by comparing the
models based on their assigned score, and selecting the one that has the optimal score. However, these
criteria are based on many simplifying assumptions that can be problematic (discussed in Section 2.3).
The problems mainly arise from the fact that the model’s complexity is determined by the number
of parameters defining a model, rather than by the parameters themselves. As a result, all models
within a model class have the same complexity. This would make it impossible to distinguish between
the complexity of the models in Figure 1.1 and their counterparts with the same number of mixture
components.

For a model under consideration, the notion of complexity should not be coarsely approximated
solely by the number of model parameters. Indeed, the complexity of a model is a function of its
probability distribution and its characterizing parameters. Any framework that quantifies the model
complexity should be able to objectively account for these factors. This thesis attempts to address
the problem of model selection from a Bayesian-information theoretic viewpoint using the minimum
message length (MML) principle (Wallace and Boulton, 1968). By adopting the MML principle, the
model’s complexity is measured by giving importance to the constituent parameters, and not just their
number (Wallace and Boulton, 1975; Wallace and Freeman, 1987; Wallace, 1997).

As per the MML model selection paradigm, an inference problem is decomposed as a two-part
lossless message communicated between a hypothetical transmitter and receiver pair: the first part
encodes the model’s parameters and the second part encodes the data using those parameters. Hence,
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different models result in different message lengths. The model that results in the shortest total
message length is considered to be the best explanation of the data.

As part of model selection, the inference of model parameters is traditionally done by either maxi-
mum likelihood (ML) or by the Bayesian maximum a posteriori probability (MAP) based approaches.
Parameter inference using these methods relies on maximizing the probability of the model given the
data. This is called the posterior density. The computation of the posterior density depends on the
prior knowledge of the parameters. This is expressed in terms of a prior probability defined over
the parameter space (see Section 2.2). The ML estimation procedure ignores the prior probability
of the parameters and, hence, does not include the model’s parameters in determining the model’s
complexity. The MAP estimation procedure formulates the posterior density using a prior. However,
the MAP estimates are not invariant to non-linear transformations of the parameter space and are,
hence, inconsistent (Oliver and Baxter, 1994).

The MML method fundamentally differs from the traditional methods of statistical inference in the
manner it handles the model’s parameters. Every continuous value has a measurement precision and
need not be inferred more precisely than required. As part of the MML-based inference, the optimal
precision to which the parameters need to be stated is computed. As a result, every parameter has a
non-zero probability value and consequently an associated encoding cost that is used to quantify the
model’s complexity. Unlike ML, MML accounts for the model’s complexity by computing the precision
of a model’s parameters and unlike MAP, MML estimators are invariant to re-parameterization of data
and parameters (Wallace, 2005).

Thus, the MML framework provides a rigorous means to evaluate competing hypotheses in their
ability to explain some observed data. Unfortunately, the “strict” MML formulation proposed by
Wallace and Boulton (1975) is computationally intractable for majority of cases (Farr and Wallace,
2002). As a means of overcoming this problem, Wallace and Freeman (1987) proposed a practical
approximation for model selection and inference. This approximation leads to a systematic procedure
to formulate the message length expression to model the data using probability distributions (see
Section 2.4). This version of the MML formulation forms the foundation on which the model selection
problems are investigated in this thesis.

The core of the thesis explores the MML-based parameter inference of some of the commonly used
probability distributions whose parameters have not yet been characterized using the Wallace and
Freeman (1987) approximation. These include the Laplace and multivariate Gaussian distributions
that are useful for modelling the data in the Euclidean space. The Laplace distribution has diverse
applications in areas such as signal processing (Eltoft et al., 2006), image denoising (Rabbani et al.,
2006), gene expression studies (Bhowmick et al., 2006), and market risk prediction (Haas et al., 2006).
The multivariate Gaussian distributions are important as they are widely used in statistical pattern
recognition tasks (McLachlan and Basford, 1988; McLachlan and Peel, 2000).

The thesis also explores the MML-based inference using some commonly used directional proba-
bility distributions. As the Laplace and Gaussian distributions are not suitable to model data with
inherent directional nature, the directional probability distributions are studied to model such data
(Mardia and Jupp, 2000). The directional distributions considered in this thesis are the multivariate
von Mises-Fisher (vMF) to model data distributed on the unit hypersphere, the Kent distribution to
model data on the three-dimensional (3D) sphere, and the bivariate von Mises distribution to model
data distributed on the surface of the 3D torus.

These distributions are important in statistical modelling tasks and have widespread applicability.
For example, multivariate vMF distributions have been used in text clustering and protein modelling
tasks (Banerjee et al., 2005). Kent distributions have applications in geology (Peel et al., 2001)
and structural bioinformatics (Kent and Hamelryck, 2005; Boomsma et al., 2006; Hamelryck, 2009).
Toroidal distributions are used to model protein dihedral angles (Mardia et al., 2007, 2008), which
serve as an important step in understanding the structural properties of proteins and characterizing
their folding patterns (Leach, 2001).
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The modelling of real-world data using probability distributions often requires the consideration of
mixture models. This is because the empirical distribution of data typically contains multiple modes,
and, therefore, cannot be efficiently modelled by a single component. Hence, mixtures of probability
distributions are considered as they facilitate the modelling of data that is potentially multimodal. In
this thesis, the MML principle has been used to develop a framework to model mixtures of probability
distributions. An important aspect of the mixture modelling problem is the determination of an
optimal number of mixture components. As stated previously, this corresponds to identifying the
model class, and selecting a mixture model corresponds to estimating the mixture parameters. In this
context, we designed a generalized search method to infer an optimal mixture that best models the
given data.

In this thesis, we consider mixtures of multivariate Gaussian distributions to model data in the
Euclidean space, and mixtures of multivariate vMF, 3D Kent, and bivariate von Mises distributions
to model directional data. We have tested our mixture modelling approach using Gaussian mixtures
and demonstrated it performs better compared to the state of the art (see Chapter 5). We have
also tested multivariate vMF mixtures to model high-dimensional text data (which is directional) and
demonstrated the effectiveness of the modelling approach in selecting optimal mixtures.

We have also used directional distributions to model the directional data arising out of protein chain
conformations. The protein chain is comprised of a sequence of amino acid residues, each containing
a central carbon atom. The directional data corresponds to the spatial orientation of these carbon
atoms with respect to the preceding carbon atoms. This data lies on the surface of a three-dimensional
(3D) unit sphere and is ideally modelled using mixtures of 3D vMF and Kent distributions.

The vMF distribution is a specific case of a Kent distribution with fewer number of parameters.
Hence, the vMF and Kent mixtures correspond to different model classes. In this context, we demon-
strate the ability of the MML principle in distinguishing competing mixtures belonging to different
model classes, and selecting the optimal mixture model. Furthermore, mixtures of bivariate von Mises
distributions have been employed to model protein dihedral angles. Unlike the directional data used
in the case of vMF and Kent mixtures, the dihedral angles are distributed on the toroidal surface and
hence, bivariate von Mises mixtures are appropriate. The resulting mixture models of protein direc-
tional data serve as fundamental tools in structural biology tasks such as generating random protein
chain conformations, three-dimensional protein structure alignment, secondary structure assignment,
among others (Hamelryck et al., 2006; Konagurthu et al., 2012, 2013; Collier et al., 2014).

In addition to MML-based parameter inference of Euclidean and directional probability distribu-
tions, and the modelling and search for optimal mixtures, this thesis also explores the MML-based
model selection in the context of function approximation. Specifically, the problem considered is the
approximation of a periodic function by truncating its infinite series expansion using a (finite) linear
combination of orthogonal basis functions. Each truncation using (say) K basis functions corresponds
to a model class. A model within the model class is specified using the weights for each basis function.
In this case, model selection refers to the statistical inference of these weights associated with the
K basis functions. The motivating foundations of this problem lies in protein structure elucidation
using X-ray crystallography, where the intensity values of the diffracted X-rays of crystallized protein
molecules are converted to 3D structures using an inverse Fourier transform. The cost-benefit trade-off
of approximating using a longer Fourier expansion (model’s complexity) versus the smaller error rate
(goodness-of-fit) is resolved using the MML principle.

This thesis further explores the MML-based model selection when the underlying data is not
modelled using probability distributions. The previously discussed mixture modelling and function
approximation problems rely on probability distributions to model the given data. When using prob-
ability distributions, the Wallace and Freeman (1987) based MML inference allows us to formulate
the message length expression in a closed form by encoding the model’s parameters and the data
given those parameters. However, in cases where the models are not defined in terms of probability
distributions, we need to develop ad hoc schemes to explicitly encode the model and the data given
that model.
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As a case in point, we consider the problem of representing a sequence of 3D points using a piecewise
ensemble of Bézier curves (linear, quadratic, and cubic). A Bézier curve is a polynomial whose degree
is determined by the number of control points. The control points give the flexibility to control the
3D trace of the curve and they uniquely determine the mathematical form of the Bézier curve (see
Section 8.2). A given collection of curves constitute a model (first part). Each model is specified by the
degree and control points of each of the Bézier curves in the ensemble. The ability of the model to fit
the 3D points with minimum error constitutes the second part of the message. We develop methods to
construct the message lengths corresponding to the two parts and minimize the total message length to
obtain an optimal ensemble. An example application includes the modelling of protein structural data
leading to their concise representations using Bézier curves. These representations are central to the
analyses of protein conformations, including effective structural searches on large protein structural
databases.

The potential implications of my research outcomes are in the construction of rigorous statistical
models that could be employed to model data in the Euclidean space and data that is directional.
The thesis aims to develop novel computational models for modelling data and we have highlighted
the applications to modelling of protein spatial orientation data. The resulting models are key to
fundamental tasks in structural biology. The models developed in conjunction with the inference
framework have demonstrable applications in many other domains. From a theoretical standpoint,
I have characterized the MML estimators of the parameters of a variety of probability distributions
as part of my research. In particular, I have advanced the state of the art with respect to modelling
using directional distributions. The effectiveness of the MML principle to objectively assess models is
the key theme that formed the foundations of my thesis.

1.1 Contributions

In summary, the research contributions as part of my thesis are the following:

• Derivation of the MML estimates of the parameters of the following distributions, thus allowing
for the accurate modelling of data in the Euclidean space:

– Laplace distribution, and

– Multivariate Gaussian distribution

• Derivation of the MML estimates of the parameters of the following directional probability
distributions:

– Multivariate von Mises-Fisher to model data on the unit hypersphere,

– Kent distribution to model data on the surface of a 3D sphere, and

– Bivariate von Mises to model data distributed on the surface of a 3D torus

• Mixture modelling

– Conceptualizing and implementing a generic search method to infer the optimal number of
mixture components that best describe the given data.

– Modelling multivariate directional data using vMF mixtures; applying it to high-dimensional
text clustering, and modelling three-dimensional directional data using Kent mixtures.

– Designing efficient descriptors of protein data that can aid in modelling structural biology
tasks.

– Using mixtures of bivariate von Mises distributions to model protein main chain dihedral
angles that can aid in studying the structural properties of proteins.

• Function approximation
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– Determining the optimal number of terms to approximate the infinite series expansion of a
periodic function using orthogonal basis functions, that has potential applications in protein
structure determination.

• Modelling using curvilinear representations

– Designing an inference framework to model 3D data with non-linear geometry using a
combination of parametric Bézier curves.

– Generating concise representations of protein folding patterns using piecewise Bézier curves,
and applying to database search and retrieval.

1.2 Thesis Outline

The structure of the thesis is as follows: Chapter 2 describes the traditional methods for parameter
inference as part of model selection. These are the maximum likelihood (ML) and maximum a posteri-
ori probability (MAP) approaches. We explain how they are traditionally used along with the different
model selection criteria. These include statistical hypothesis testing and information-theoretic criteria
such as minimum description length (MDL), Akaike and Bayesian information criteria. In this con-
text, we explain the usual framework of model selection using the minimum message length (MML)
criterion and how it differs from the other criteria. In particular, we focus on the well-known Wallace
and Freeman (1987) method, which is a practical approximation to the generalized MML criterion
(Wallace and Boulton, 1975). The Wallace and Freeman (1987) based inference framework is used in
the subsequent chapters to estimate the parameters of probability distributions that had not been pre-
viously characterized. In order to evaluate the new MML parameter estimates against the traditional
ML and MAP estimates, the chapter includes a discussion of using the bias and mean squared error
(MSE) of the estimates and the Kullback-Leibler (KL) distance to compare the different estimators.

Chapter 3 focuses on distributions used to model data distributed in the Euclidean space. In
particular, it presents my derivations of the MML estimates of the Laplace and of the multivariate
Gaussian distribution using the Wallace and Freeman (1987) method. The resulting MML estimators
of both distributions are demonstrated to have lower bias as compared to the traditionally used
ML estimators of Laplace (Norton, 1984) and Gaussian (Barton, 1961) distributions. This unbiased
estimator of the multivariate Gaussian distribution is used in mixture modelling in Chapter 5.

Since the Laplace distribution is univariate, we consider its analysis against the univariate Gaus-
sian distribution in Chapter 3. In modelling some observed data using the Laplace and (univariate)
Gaussian distributions, we use the derived estimators to determine the preference of a Laplace or a
Gaussian as per the MML framework. This is done by comparing the message lengths obtained by
the two distributions. The distribution with the least total message length is selected as the best
model to describe the data. We study the behaviour of the difference in their message lengths in
order to validate that the MML framework is able to discriminate between the Laplace and Gaussian
distributions and select the correct model under varying amount of data. We then show some applica-
tions of MML-based model selection in modelling real-world datasets using the Laplace and univariate
Gaussian distributions.

Chapter 4 focuses on distributions suitable to model data with inherent directional nature, that
is, directional probability distributions. In particular, we consider three such distributions: the mul-
tivariate von Mises-Fisher (vMF), the 3D Kent distribution, and the bivariate von Mises (BVM)
distribution. The vMF distribution is the spherical analogue of the symmetric Gaussian wrapped on
the unit hypersphere. The 3D Kent distribution is a generalization of the vMF distribution and has
ellipse-like contours on the spherical surface. It is the spherical analogue of the asymmetric bivariate
Gaussian distribution. The BVM distribution is the toroidal analogue of the asymmetric bivariate
Gaussian distribution, and has ellipse-like contours on the surface of the 3D torus.

The chapter starts with a description of the existing estimators of the parameters of a multivariate
vMF distribution. The MML estimates of the parameters are derived and are compared with the
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contemporary estimators based on ML estimation (Banerjee et al., 2005; Tanabe et al., 2007; Sra,
2012; Song et al., 2012). The MML estimators are demonstrated to outperform the contemporary
estimators with respect to metrics such as bias, MSE, KL distance, and likelihood ratio based statistical
hypothesis testing.

The chapter then details the inference using Kent distributions defined on the surface of a 3D
sphere. We explain the intuition behind modelling using the Kent distributions and discuss the tra-
ditional methods of parameter estimation. These are based on moment, (Kent, 1982), ML and MAP-
based estimation. In this context, we discuss different parameterizations of the distribution in order
to demonstrate how the MAP estimates vary and consequently result in inconsistent estimates. We
outline the derivation of the MML paramter estimates, and compare them with the exising estimators.
We empirically evaluate the MML estimators against the traditional estimators by comparing their
bias and MSE with respect to the true distribution parameters. We also analyze the KL distance due
to the estimated parameters and perform statistical hypothesis testing to demonstrate the superior
performance of the MML estimators.

This is followed by a discussion of the inference using BVM distributions defined on the surface of
a 3D torus. Similar to the Kent distribution, we discuss the existing methods of parameter estimation
and subsequently derive the MML estimates. The derived estimators are shown to perform better than
the traditional estimators based on the experimental evaluation, as it was done for Kent distributions.

Chapter 5 explores the MML-based model selection in the context of mixture modelling using
probability distributions. In addition to the selection of a representative component distribution, it is
also essential to infer an optimal number of mixture components. This chapter describes some of the
existing methods that are often used to determine the number of mixture components. We highlight
the limitations of these methods and propose an MML-based search method in order to rectify those
drawbacks. The chapter details how the MML framework, in conjunction with the search method, is
used to evaluate competing mixtures and select the one that has the least total message length.

The proposed search method begins with a one-component mixture and iteratively updates the
mixture components through a series of perturbations depending on the improvement to the total
message length. These perturbations, which are termed as Split, Delete, and Merge operations, alter
the number of mixture components. We provide an example illustrating the search process and describe
the various steps involved. The chapter details the design of this mixture modelling apparatus in the
case of multivariate Gaussian distributions. The superior performance of the search and inference
method is demonstrated against the widely used method of Figueiredo and Jain (2002). The proposed
method is generalizable to accommodate models of probability distributions whose parameters can be
estimated using the Wallace and Freeman (1987) method.

Chapter 6 focuses on mixture modelling using the previously discussed directional distributions,
namely the multivariate vMF, 3D Kent, and the bivariate von Mises. Our proposed mixture modelling
method, formulated in the case of Gaussian distributions in Chapter 5, is extended to model data
using vMF mixtures. The vMF distributions have been previously used in clustering text documents
(Banerjee et al., 2005), and protein dihedral angles (Dowe et al., 1996a). As example applications,
we employed mixtures of vMF distributions in the context of high-dimensional text clustering and
modelling directional data resulting from protein conformations. Compared to the related work, the
results obtained due to the MML-based search method demonstrate the ability of MML-based inference
to infer optimal vMF mixtures in a completely unsupervised setting (Kasarapu and Allison, 2015).

We then adapted our search method to handle mixtures of Kent distributions. As a specific
example, Kent mixtures were employed in modelling protein directional data. The resulting vMF and
Kent mixtures indeed serve as efficient descriptors of protein structural data. These are shown to
be better alternatives as compared to the uniform distribution on the sphere which was previously
considered by Konagurthu et al. (2012) and Collier et al. (2014) in protein modelling tasks. The results
following the application of Kent mixtures to model protein directional data demonstrate that they
supersede the vMF mixture models. The ability of Kent distributions to model asymmetrical data
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leads to improved description of the protein structural data. Hence, they serve as natural successors
to the vMF mixture models to describe protein structural data.

Both the vMF and Kent probability distributions are defined on unit spheres and are used to
model data distributed on the spherical surface. We explored a further extension in the thesis to
model directional data distributed on the toroidal manifold using the MML framework. This is
important to model data such as the protein main chain dihedral angles. The dihedral angle data is
different to the data considered in protein structure modelling using vMF and Kent distributions, and
are not distributed on the spherical surface. Therefore, we consider mixtures of bivariate von Mises
distributions to model the dihedral angles of the protein main chain.

Chapter 7 focuses on the problem of model selection in the context of function approximation,
where the infinite series expansion of a periodic function is truncated using a linear combination of
orthogonal basis functions. In this chapter, for an expansion involving a finite number of orthogonal
basis functions, the inference of parameters of the linear combination is done using MML-based regres-
sion analysis. We consider two types of orthogonal basis functions: (1) the Fourier series comprising
of trignometric basis functions such as alternating sines and cosines, and (2) Legendre polynomials.
We demonstrate how the MML-based model selection paradigm is able to compute the total message
length corresponding to different series expansions with different number of orthogonal functions, and
select the expansion that has the least total message length. The approximation of a Fourier series
is an important problem as it has direct implications in protein structure determination using X-ray
crystallography, where the 2D diffraction pattern of protein crystals is transformed to its corresponding
3D structure using a Fourier transform.

Chapter 8 explores the problem of model selection when the model does not correspond to
a probability distribution. In particular, we consider the problem of modelling a given set of 3D
points using a piecewise combination of Bézier curves of varying degree. We discuss our strategies
involved in explicitly encoding the model’s parameters and the data using those parameters. We
demonstrate how the MML-based inference framework is used in determining the suitable number
and the degree of the Bézier curves that can model the given sequence of 3D points. An example
application includes the modelling of protein folding patterns leading to their concise representations.
We discuss case studies involving some protein structures and show how our proposed method is able
to generate concise representations of the 3D trace of the coordinates of protein structures. We detail
how the representations can be used as unique signatures corresponding to each protein and how these
are central to the analyses of protein conformations, including effective structural searches on large
protein databases (Kasarapu et al., 2014).

Chapter 9 concludes the thesis by outlining the key results of the work. We provide some potential
research ideas that can be carried out as extensions of the current thesis.



Chapter 2

Model selection and inference

2.1 Introduction

This chapter outlines the methods that are commonly used in model selection and inference, thus
providing the background for the rest of the thesis. As mentioned in Chapter 1, a set of models
is usually considered when describing some observed data. This model set consists of several model
classes, where a model class is defined as a collection of models that have the same parametric form
and, thus, the same number of parameters.

A model is defined as an instance of the model class whose parameters are fully specified. For
example, consider a graph with K nodes wherein every pair of nodes are connected to each other.
The parameters of the graph, in this case, could be the weights of the connections between any pair of
nodes. A model in this case corresponds to a graph with K nodes but with a specified set of weights
for the connections. All graphs with K number of nodes but with varying weights constitute a model
class. Naturally, there are countably infinite model classes corresponding to varying number of nodes.
Similarly, as explained in Chapter 1, mixture distributions containing K components constitute a
model class. Varying K leads to different model classes, and within each class, a model corresponds
to a mixture whose parameters are completely specified.

The problem of model selection refers to the consideration of one particular model that belongs
to one of the infinite model classes. When modelling using probability distributions, model selection
refers to the problem of inference of the parameters that characterize those distributions. Some
traditional methods of parameter estimation include the maximum likelihood (ML) and the maximum
a posteriori probability (MAP) (Section 2.2). A model obtained in this way can be used for future
analysis by predicting the probability of occurrence of unseen data.

As mentioned in Chapter 1, a model that optimally balances the trade-off due to its complexity
and goodness-of-fit should be selected for modelling the data. Any model selection paradigm should
be able to balance the trade-off arising due to these two conflicting objectives. Generally speaking,
models with a higher number of parameters fit the data better. However, the model’s complexity
should not be a sole function of the number of parameters. In this context, we discuss some commonly
used model selection frameworks that account for these two factors in Section 2.3. These include the
likelihood ratio test and information-theoretic criteria such as minimum message length (MML) and
minimum description length (MDL).

This chapter focuses on the MML-based model selection framework and explains the key differences
with respect to other model selection frameworks. In particular, we focus on the Wallace and Freeman
(1987) method which, as mentioned in Chapter 1, is a practical approximation to the generalized MML
criterion (Wallace and Boulton, 1975). In this thesis, the Wallace and Freeman (1987) based inference
framework is used to estimate the parameters of the probability distributions. In order to evaluate
the MML parameter estimates against the traditional ML and MAP estimates, this chapter includes a
discussion of using the bias and mean squared error (MSE) of the estimates and the Kullback-Leibler
(KL) distance to compare the different estimators.

9
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This chapter is organized as follows: Section 2.2 describes the traditional ML and MAP-based
approaches used to infer the parameters of a model. Section 2.3 describes the frameworks commonly
used in the model selection. The details of the likelihood ratio test are presented first followed by a
discussion on the information-theoretic model selection criteria. This is followed by a discussion of
the MML criterion in Section 2.4, This section outlines the Wallace and Freeman (1987) approxima-
tion. An example outlining the Wallace and Freeman (1987) approximation is shown in the case of
inference of parameters of a univariate Gaussian distribution. This is followed by a proof establishing
the statistical consistency of the MML parameter estimators. Section 2.5 outlines the comparison
methodologies that are employed to evaluate the quality of the inferred parameter estimates against
the traditional estimators.

2.2 Traditional methods of parameter estimation

A model is characterized by a set of parameters Θ. Thus, model selection corresponds to inference
of the model’s parameters. In other words, estimating the parameters of a model is fundamental to
selecting a model from a model class. Traditional methods of parameter estimation are based on a
Bayesian theoretic interpretation of the data and an assumed hypothesis on the data. A hypothesis
is defined as an assertion on the underlying distribution of the data, with a model then being a
mathematical realization of the hypothesis. The hypothesis corresponds to a model class that is
parameterized by Θ. According to the well-known Bayes’s theorem, we have

Pr(H&D) = Pr(H)× Pr(D|H) = Pr(D)× Pr(H|D) (2.1)

where D denotes the observed data, H some hypothesis about that data, and Pr(X) denotes the
probability of X. Further, Pr(H & D) is referred to as the joint probability, Pr(H) and Pr(D) are
called the prior densities of the hypothesis H and data D, respectively, Pr(H|D) is referred to as the
posterior probability, and Pr(D|H) is referred to as the likelihood. In terms of the model parameters,
we have

Pr(Θ|D) =
Pr(D|Θ) Pr(Θ)

Pr(D)
where Pr(D) =

∫
Θ

Pr(D|Θ) Pr(Θ) dΘ (2.2)

Note the dependence on Pr(Θ), which is a prior density defined on the parameters. As mentioned
before, there are two commonly used methods of parameter estimation: These are the maximum
likelihood (ML) and the maximum a posteriori probability (MAP). They differ in their treatment
of the prior density and consequent approximations of the posterior density Pr(Θ|D). In both these
methods, the optimal parameters correspond to those that maximize the posterior density, and will
be referred to as Θ̂ML and Θ̂MAP respectively. The ML and MAP-based estimation methods are
summarized in the next two sub-sections.

2.2.1 Maximum Likelihood (ML) estimation

The ML estimation procedure considers the use of a uniform prior density Pr(Θ) on the parameters
(Murphy, 2012). As such, the prior density is essentially ignored, while maximizing the posterior
density Pr(Θ|D). This is appropriate when there is no additional information available about the
nature of the parameters and, thus, no prior knowledge. Based on this assumption, maximizing the
posterior density Pr(Θ|D) is equivalent to maximizing the likelihood function Pr(D|Θ). The ML
estimator is, thereby, given by

Θ̂ML = arg max
Θ

Pr(D|Θ)

where arg max
Θ

refers to the Θ (argument) that maximizes the likelihood function Pr(D|Θ).

Further, the likelihood term is calculated by assuming the data consists of independent and iden-
tically distributed (i.i.d.) sample points. For xi ∈ D and a probability model f(x; Θ), assuming an
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i.i.d. sample leads to the likelihood function being computed as

Pr(D|Θ) ≈
∏

xi∈D
f(xi; Θ)

where ≈ denotes the approximation symbol, and
∏

denotes the product expression.

2.2.2 Maximum a posteriori probability (MAP) estimation

The MAP estimation considers a non-uniform prior defined on the parameter vector Θ. This is
appropriate when some prior knowledge is available about the nature of the parameters, as it is
usually the case. The resultant posterior density Pr(Θ|D) is then directly proportional to the product
of the prior density of the parameters Pr(Θ) and the likelihood of the data given those parameters
Pr(D|Θ). The likelihood term is computed assuming again an i.i.d. sample. The MAP estimator is
then obtained by maximizing the posterior density and is given by (Murphy, 2012)

Θ̂MAP = arg max
Θ

Pr(Θ) Pr(D|Θ)

Note that the MAP estimate depends on the parameterization of the probability density function
f(x; Θ). As a result, the MAP estimator is not invariant under some non-linear transformations
of the parameter space. If T (Θ) = Θ′ denotes a transformation on the parameter vector Θ, then
for invariance, the parameter estimates Θ̂MAP and Θ̂′MAP in both the parameterizations should be
affected by the same transformation. In this setup, the two versions of the posterior density will be

Posterior(Θ|D) ∝ Pr(Θ)×
∏

xi∈D
f(xi; Θ)

Posterior(Θ′|D) ∝ Pr(Θ′)×
∏

xi∈D
f(xi; Θ

′) (2.3)

where Pr(Θ′) is the prior density in the alternative parameter space. If J is the Jacobian matrix

of the transformation given by J =
∂Θ′

∂Θ
and |J | is its determinant, then Pr(Θ′) =

Pr(Θ)

|J | . The

two versions of the MAP estimates should be related as T (Θ̂MAP) = Θ̂′MAP. However, this is not
usually the case in MAP-based estimation. This is because the MAP estimator corresponds to the
mode of the posterior density and the mode is not invariant under non-linear transformations (Oliver
and Baxter, 1994). This is a drawback of MAP estimation because statistical invariance is a required
property for any estimation method. Any estimator that is invariant under non-linear transformations
of the parameter space is robust as it is not dependent on how the model is parameterized. Examples
demonstrating this behaviour are discussed in Sections 4.3.3 and 4.4.2.

2.3 Commonly used model selection paradigms

The estimation of the parameters of a model allows the computation of the likelihood function, which
corresponds to the goodness-of-fit of the model to the data. In order to determine the suitability of
a model in describing the given data, the model’s complexity needs to be accounted for. Here, we
look into some commonly used frameworks that determine the model’s complexity. One of them is the
statistical hypothesis testing method, which examines the asymptotic behaviour of the likelihood ratio
corresponding to competing models. The other frameworks are based on information-theoretic criteria
and are used to quantify the model’s complexity as a function of the model’s parameters. These are
the minimum description length (MDL) and the minimum message length (MML).
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2.3.1 Likelihood Ratio

The likelihood ratio test is used to determine the preference of a null hypothesis H over an alternate
hypothesis H′. An alternate hypothesis is defined as a general model class with a certain number of
free parameters. A null hypothesis is a simpler or nested model class, which is defined as a specific
case of the general model class. The nested class is obtained by constraining some of the parameters of
the alternate hypothesis. The nested model class therefore, has fewer free parameters compared to the
alternate hypothesis and is fully contained within the general model class. Every model in the nested
model class is consequently a member of the general model class. For example, a quadratic polynomial
is a nested model class of a cubic polynomial. As mentioned previously, a model is a mathematical
characterization of a hypothesis and hence, each hypothesis will have a parametric form governed by
the parameter vector Θ.

Given the data D, the likelihood ratio test test involves evaluating the ratio of the maximized
likelihood of the data under both the hypotheses. Let the ratio be denoted by

λ =
max
H

likelihood(D|H)

max
H′

likelihood(D|H′) =
Pr(D|Θ̂ML)

Pr(D|Θ̂′ML)

In the above equation, Θ̂ML and Θ̂′ML are the maximum likelihood estimates of the parameters. In

other words, Θ̂ML and Θ̂′ML correspond to the optimal models in both the model classes H and H′
respectively. The test essentially compares the ratio of likelihoods if it were modelled using the best
representative models from the two model classes.

The test statistic based on λ is defined as the negative logarithm of the likelihood ratio and is given
by Λ = −2 log λ. As the likelihood due to the null hypothesis decreases, then λ decreases leading to
an increase in Λ. Thus, the test statistic can be seen as a qualitative measure of the divergence from
the null hypothesis. The likelihood ratio test involves computing the ratio Λ given the data D. This is
then compared with a pre-defined critical value that corresponds to the significance of the test. If the
obtained test statistic exceeds the critical value, then it is considered that there is significant evidence
in rejecting the null hypothesis, that is, the model class with fewer number of parameters is rejected
in favour of the alternate hypothesis.

The significance of the test is pre-set to some reasonable value, say α < 1. The value α corresponds
to the minimum allowed probability of observing a likelihood ratio by chance, assuming the data is
sampled from the null hypothesis. The value of α can be chosen depending on the required statistical
significance (a value of 0.5 is typically chosen). This is used to compute the critical value which defines
a confidence region in which the test statistic should lie if the null hypothesis were to be accepted.
To determine this confidence region, it is required to formulate the probability distribution of Λ.
This presents a difficulty as it is often not possible to determine the exact form of the probability
distribution. In such cases, the distribution of the statistic Λ is asymptotically approximated as a χ2

distribution with degrees of freedom equal to the difference in the number of free parameters between
the alternate and the null hypotheses (Wilks, 1938). In summary, if λ is sufficiently small, it would
lead to a rejection of the null hypothesis. Conversely, if Λ exceeds some confidence threshold, H is
rejected.

The likelihood ratio test is appealing because its simplistic approximation allows its employability
in a wide variety of scenarios. However, it is to be noted that the approximation suggested by Wilks
(1938) is only valid for nested model classes. This restricts its direct application in comparing model
classes which do not satisfy this property. For example, the likelihood ratio test is not applicable
to differentiate mixture models as formulation of a nested mixture hypothesis is not unique (Smith,
1989). This has led to researchers using several other approximations to the problem of hypothesis
testing of mixtures (Chen and Cheng, 1997; Lo et al., 2001; Chen et al., 2001; Chen and Li, 2009).
Also, much of the research has been focused on univariate Gaussian mixtures and a corresponding
null hypothesis with one mixture component. In this regard, Li and Chen (2010) aim to improve
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on these approximations. However, the natural generalization of these approximating approaches to
accommodate multivariate data and to mixtures of any probability distribution is not available to the
best of our knowledge. Furthermore, these approximations are valid only in the asymptotic case which
further restricts its utility, as most practical examples deal with finite amounts of data.

2.3.2 Information-theoretic criteria

In this section, some of the commonly used information-theoretic model evaluation criteria are outlined
following their chronological order.

Strict Minimum Message Length (Wallace and Boulton, 1968, 1975)

As mentioned before, Wallace and Boulton (1968) developed the first criterion for model selection
based on information theory. The work is based on that of Shannon (1948), which showed how given
an event E with probability Pr(E), the length of the optimal lossless code to represent that event
requires I(E) = − log2(Pr(E)) bits. Applying Shannon’s insight to Bayes’s theorem (Equation 2.1),
Wallace and Boulton (1968) got the following relationship:

I(H&D) = I(H) + I(D|H) = I(D) + I(H|D) (2.4)

As a result, given two competing hypotheses H and H′, the difference in message lengths ∆I, is given
as

∆I = I(H&D)− I(H′ &D) = I(H|D)− I(H′|D) bits.

If the difference ∆I > 0, it gives a measure of the extra compression achieved by H′ over H. The
value of ∆I can be used to compute the posterior log-odds ratio between the two hypotheses. Using
the fact that I(H|D) = − log2 Pr(H|D), the above equation ∆I can be expressed as

∆I = I(H|D)− I(H′|D) = − log2 Pr(H|D) + log2 Pr(H′|D)

Pr(H′|D) = 2∆I Pr(H|D) (2.5)

This relation is important because depending on ∆I, one can determine the odds of using a particular
hypothesis to model the given data.

I(H&D) can be interpreted as the total cost to encode a message comprising of the following two
parts:

1. the hypothesis H, which takes I(H) bits, and

2. the observed data D using knowledge of H, which takes I(D|H) bits.

A more complex H may explain D better thus resulting in a smaller I(D|H), but may also take more
bits to be stated resulting in a larger I(H). The trade-off comes from the fact that (hypothetically)
transmitting the message requires the encoding of both the hypothesis and the data given the hypoth-
esis, that is, the model complexity I(H) and the goodness-of-fit I(D|H). The model that results in
the shortest total message length is considered to be the best model to describe the data. Thus, the
framework provides a better means to objectively compare two competing hypotheses, as it accounts
for the complexity of the hypothesis itself.

For a hypothesis H that corresponds to a model with parameter vector Θ, the MML framework
accounts for the contribution made by Θ in quantifying the model complexity. In the “strict” MML
formulation (Wallace and Boulton, 1975), given the data D, one is required to find a partition of the
data space such that the data within each part is explained by a different model Θ. The partition
that minimizes the total message length corresponds to the best description of the data. This problem
of partitioning the data and mapping each part to an appropriate model has been shown to be
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NP-hard (Farr and Wallace, 2002). As such, it becomes practically difficult to compute the model
complexity. As a means of overcoming this problem, Wallace and Freeman (1987) proposed a practical
approximation, whereby it becomes possible to compute the model complexity in most cases. This
version of the MML formulation forms the foundation on which the model selection problems are
investigated in this thesis. The message length formulation and parameter estimation using the Wallace
and Freeman (1987) approach is elaborated in Section 2.4.

Minimum Description Length (Rissanen, 1978)

The minimum description length (MDL) principle was proposed by Rissanen (1978). According to the
MDL, the model that leads to the best compression of the data should be preferred. It is important
to note that in MDL parlance, this postulate is employed in the consideration of a model class, and
not a model. Once an optimal model class is inferred, the optimal model within the model class is
obtained by employing a maximum likelihood based estimation method.

As described in Oliver and Baxter (1994), the MDL principle selects model classes by choosing the
model class with minimum stochastic complexity (Rissanen, 1989). The stochastic complexity (SC)
for the given observed data D, and a model class with a fixed parametric form Θ is defined as

SC = − log Pr(D) = − log

(∫
Θ

Pr(D|Θ) Pr(Θ) dΘ

)
where Pr(D) is the probability of the observed data (Equation 2.2). Thus, the model class that
minimizes the stochastic complexity corresponds to the case when the best compression of the data is
achieved.

It is to be noted that each model class has a distinct parametric form and, consequently, the
likelihood term Pr(D|Θ) varies for each model class. Further, the above integral can be understood
as the expected value (the average) of the likelihood term over all possible models within the model
class. Thus, the above formulation enables the selection of a model class that is uniquely identified by
a parametric form Θ.

The feasibility of the explicit computation of the integral relies on the mathematical forms of the
prior density Pr(Θ) and the likelihood function Pr(D|Θ). However, approximations to minimizing
the stochastic complexity as a means of practical MDL formulation have been proposed by Schwarz
(1978). This is popularly known as the Bayesian Information Criterion (BIC) and, for large sample
sizes N , is given by the following simple-to-use expression:

BIC(p) =
p

2
logN + L(D|Θ) (2.6)

where p denotes the number of free parameters in the model class, N is the amount of data, and
L(D|Θ) is the negative log-likelihood of the data.

The factor (p/2) logN can be treated as a penalty associated with a model class. The factor can be
rearranged such that the probability of each free parameter in the model is given by Pr(θi) = 1/

√
N ,

where θi ∈ Θ and 1 ≤ i ≤ p, so that its information content is − log Pr(θi) = (1/2) logN . For p free
parameters, the cumulative information content is, therefore, (p/2) logN . The above expression for
BIC is a result of an asymptotic approximation of the integral appearing in the definition of stochastic
complexity.

The above formulation suggests that models with greater number of free parameters have greater
penalties. Each model class has different number of free parameters, and an associated negative log-
likelihood value. Increasing the number of free parameters leads to generalized models that have
greater penalties but which also minimize the negative log-likelihood value. This trade-off can be
thought of as attempting to balance the model complexity (given by the number of free parameters
within a model class) and the goodness-of-fit (given by the negative log-likelihood) in modelling the
given data.
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Another related information-theoretic criterion proposed by Akaike (1974) called the Akaike In-
formation Criterion (AIC) has a similar formulation as BIC and is given by

AIC(p) = p+ L(D|Θ) (2.7)

The penalty factor here is given by the number of free parameters p in the model class. Similar to
BIC, AIC is also limited to the selection of model classes and not models.

Note that all models within a model class have the same value of p and hence, selecting a model
within the model class is equivalent to minimizing the negative log-likelihood expression. Essentially,
all models within a model class have the same importance and the selection of the optimal model
is done by minimizing the negative log-likelihood expression. As an alternative approach to give
unequal importance to individual models, this thesis explores the MML-based inference which not
only distinguishes model classes but also provides a unifying framework to differentiate the models.

Minimum Message Length and Algorithmic Complexity

Here, we will explore the strong connection between the MML framework and the concepts from
algorithmic complexity research. The formal study and applications of the complexity of the informa-
tion contained in a body of data, represented by random binary strings, have roots in three distinct
streams of thought (Wallace and Dowe, 1999). The first stream that developed the theory of algo-
rithmic probability was conceived by Solomonoff (1964). The second stream conceptualizes the notion
of algorithmic complexity and was initiated by Kolmogorov (1965) with important contributions by
Chaitin (1966). The third and practically motivated notion of algorithmic complexity was formulated
and developed as the minimum message length framework (Wallace and Boulton, 1968; Boulton and
Wallace, 1970, 1973; Wallace and Boulton, 1975). These streams have been developed independently
of each other and have been conceptualized around the same time, although with different motivating
foundations (Wallace and Dowe, 1999).

The different notions of algorithmic complexity are explained by representing a body of information
in terms of a binary data string I of finite length |I| and by considering a universal Turing machine
(UTM), denoted by T . According to the first stream proposed by Solomonoff (1964), the focus is
to model the real-world observed data D by developing a probability distribution over the set of all
possible binary strings I ∈ {I1, I2, . . .}. Solomonoff’s version considers all strings I that will cause T
to produce an output having D as a prefix. It then defines a probability distributions for D as

PT (D) =
∑

I∈{I1,I2,...}

2−|I|

In the second stream, Kolmogorov (1965) defines algorithmic complexity of a binary string D as
the length of the shortest string I which when given as input to T produces D as the output. Let
the Kolomogorov complexity of D with respect to T be denoted by KT (D). As noted in Wallace
and Dowe (1999), the above probability sum is dominated by the term for the shortest input string.
Consequently, there is a close correspondence between the versions of algorithmic complexity proposed
by Kolomogorov and Solomonoff and hence, the probability PT (D) is often approximated as 2−KT (D).

In the MML stream of thought, the notion of algorithmic complexity is based on Shannon’s theory
of information rather than with respect to the input to a UTM. According to the MML framework,
D represents some data in the real-world and the goal is to find a shortest string I composed of two
sub-strings H and A. The string I corresponds to the total message, the first part H is a hypothesis
about D, and the second part A is an encoding of the string D assuming the hypothesis about D
were true. As described previously and highlighted through Equations 2.1 and 2.4, the MML notion
integrates Bayesian theory and Shannon’s insight to compute the optimal length of the string I, that
is,

|I|= |H|+|A|= − log2 Pr(H)− log2 Pr(D|H)
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A major difference between Solomonoff’s theoretical construct and that of Kolmogorov and MML’s
focus is the emphasis on prediction rather on inductive inference. Solomonoff’s pursuit of the theory
of algorithmic probability is largely motivated by the prediction of future data and thus, requires a
probability model PT (D). On the other hand, Kolmogorov’s development of the theory of algorithmic
complexity and Wallace and Boulton (1968)’s MML framework were largely driven by model selection
and inductive inference. Wallace and Dowe (1999) establish a formal connection between Kolmogorov
complexity and the MML framework. They argue that as applied to the inference of models, Kol-
mogorov complexity and MML are essentially the same. They differ only in the choice of the reference
Turing machines. In the first stream, a UTM is considered while in the MML stream, the theory is
restricted to a non-universal form in the interest of computational feasibility. While practical real-
izations of the ideal Solomonoff and Kolomogorov concepts are difficult, the MML paradigm offers
a readily computable formalization of the principle of algorithmic complexity. The practical utility
of MML has been demonstrated by its applications in machine learning and statistical modelling of
real-world data (Wallace, 2005).

It is also worth mentioning that the minimum description length (MDL) framework of Rissanen
(1978) is another widely used approach for inductive inference and is closely related to MML in
practice. In fact, its relationship with Kolomogorov complexity has been adequately discussed by Li
and Vitányi (1997) and Grünwald (2007). However, as described previously, the MDL formulation
(Equation 2.6) is a simplified approximation and has limitations in model selection and inference. We
now proceed to give an overview of the MML framework, specifically the Wallace and Freeman (1987)
approximation, and illustrate the procedure to estimate the parameters of a statistical model under
this framework.

2.4 Minimum Message Length Framework (Wallace and Freeman,
1987)

This section describes the formulation of the total message length expression, in terms of encoding the
model parameters and the data using those parameters. This is followed by the Wallace and Freeman
(1987) approximation which is used as a means to realize the practical computation of the parameter
estimates.

2.4.1 Message length formulation

In the MML framework, both the parameters and data need to be communicated between a hypo-
thetical transmitter and a receiver. As a result, the framework takes into account the message length
associated with encoding both the parameters and the data using those parameters. Hence, depend-
ing on the parameters chosen, the message length varies. The parameters that minimize the total
message length are the MML estimates. Let Θ be the parameter vector that defines a hypothesis and
D = {xi} ∀ 1 ≤ i ≤ N such that xi ∈ Rd. The total message length to encode the parameters and the
data using the parameters is then given as: I(Θ &D) = I(Θ) + I(D|Θ)

Encoding the parameters I(Θ)

As noted by Oliver and Baxter (1994), the parameters and the data are limited by their measurement
accuracy and can only be stated to a finite precision. The parameter space is partitioned into cells of
volume V (Θ) corresponding to the region of uncertainty around Θ. Each cell is assigned a unique index
and the cell index corresponding to a Θ is communicated by the transmitter. The receiver decodes
the cell index and interprets the parameter as being the center of the cell. This mechanism ensures
that parameters are decoded to the precision given by the volume of region of uncertainty. If h(Θ)
defines a prior density on the parameter Θ, its probability is approximated as Pr(Θ) ≈ h(Θ)×V (Θ).
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Hence, the message length to encode the parameter Θ is given as

I(Θ) = − log(h(Θ)V (Θ))

As part of the MML inference, we need to determine the optimal probability of the parameters,
which is a function of the prior density h(Θ) and the accuracy of the parameter vector V (Θ). In
Bayesian inference problems, h(Θ) is usually assumed based on some domain knowledge. However,
determination of an optimal V (Θ) is not straightforward. In Section 2.4.2, we show the computation
of V (Θ) based on the Wallace and Freeman (1987) approximation method.

Encoding the data given the parameters I(D|Θ)

If ε denotes the accuracy of measurement (AOM) of a datum along each dimension, then its volume of
uncertainty is given as εd. Unlike the volume of uncertainty of the parameters V (Θ) which depends
on Θ, the volume of uncertainty of a datum is assumed to be constant and it is known a priori.
To encode the data, the domain from which the data is sampled is partitioned into cells of equal
volume. As with encoding the parameters, each cell is identified by a unique index, and instead of
transmitting the actual datum, the transmitter sends the corresponding cell index. If a datum belongs
to a particular cell, the probability associated with that cell is computed which is then used to calculate
its code length. On the other end, the receiver interprets the datum as being the center of this cell.
The mechanism ensures that data is decoded to the precision given by AOM. Assuming the data are
sampled independently from a probability density function given by f(x; Θ), the probability of data

given the parameters is approximated as Pr(D|Θ) ≈
∏

xi∈D
f(xi; Θ)× εd. Hence, the message length to

encode the data given the parameter vector is

I(D|Θ) = − log Pr(D|Θ) = −Nd log ε−
∑
xi∈D

log f(xi; Θ)︸ ︷︷ ︸
L(Θ)

Note that the expression for I(D|Θ) is similar to the negative log-likelihood expression L(D|Θ) (rep-
resented as L(Θ) in the above equation for easy handling of the subsequent derivation in this section)
without the constant term1.

MML rationalized as a communication framework

The transmitter initially selects a parameter vector Θ, encodes its cell index, and communicates it to
the receiver. This constitutes the first part of the message. The transmitter then encodes the data
using the selected parameter vector and communicates it to the receiver. This forms the second part
of the message. The receiver first decodes the cell index and uses the center of the cell as the value of
the parameter vector, following which the receiver decodes the transmitted data using this parameter
vector. Thus, a chosen parameter vector has an associated message length to encode the data.

As the transmitter-receiver pair are concerned with the encoding/decoding of the cell indexes,
any change to their respective centers can impact the message lengths significantly (Oliver and Hand,
1994). Such sensitive changes can be due to encoding subtleties that depend on the boundaries of the
parameter space, and to changes to the partitioning scheme of the parameter/data space. For this
reason, given a parameter vector Θ, the expected value of the message length in the vicinity of Θ is
determined (Wallace and Boulton, 1975) as discussed in the next section. The expected value of the
message length computed within the volume V (Θ) is then approximated as the second part of the
message, that is, I(D|Θ) ≈ E[I(D|Θ)].

1We use a slightly different notation just in this case, where the negative log-likelihood L(D|Θ) is represented by
L(Θ) for convenience.



18 CHAPTER 2. MODEL SELECTION AND INFERENCE

2.4.2 The Wallace-Freeman approximation

In order to decode the message losslessly, the transmitter and receiver must mutually agree upon
the encoding details of the parameter space. For this, they should decide on V (Θ) corresponding
to a cell. However, note that encoding V (Θ) again requires a prior on V (Θ) and determining the
volume of region of uncertainty of V (Θ), that is, V (V (Θ)). This leads to an infinite regress and is
computationally intractable (Oliver and Baxter, 1994). There are few approximations proposed that
are used in practice. Of particular interest is the Wallace and Freeman (1987) approximation. A
characteristic feature of this approximation is in the mechanics involved in computing the optimal
V (Θ), and subsequently inferring Θ that minimizes the total message length.

We now proceed to formulate the message length expression as per Wallace and Freeman (1987).
The following derivation is reproduced from Oliver and Baxter (1994). The expected value of the
second part of the message is obtained by integrating I(D|Θ) in the region corresponding to V (Θ),
that is,

E[I(D|Θ)] =
1

V (Θ)

∫
V (Θ)

L(Θ + z) dV

where (Θ + z) corresponds to a parameter vector within the area of interest and L(·) is the negative
log-likelihood of the data. Considering up to the quadratic terms in the Taylor series expansion for
L(Θ + z), the total message length is approximated as

I(Θ &D) ≈ − log(V (Θ)h(Θ)) +
1

V (Θ)

∫
V (Θ)

(
L(Θ) + zT

∂L(Θ)

∂Θ
+

1

2
zT

∂2L(Θ)

∂Θ∂ΘT
z

)
dV

where
∂2L(Θ)

∂Θ∂ΘT
is the matrix of second-order differentials of L(Θ), called the Hessian matrix. The

observed Fisher information matrix is the Hessian matrix of the negative log-likelihood evaluated at
the ML estimate. On simplifying, we get

I(Θ &D) ≈ − log(V (Θ)h(Θ)) + L(Θ) +
1

2V (Θ)

∫
V (Θ)

zT
∂2L(Θ)

∂Θ∂ΘT
z dV

The Hessian is dependent on the observed data. However, the receiver does not have knowledge of
the data and therefore, the transmitter has to communicate this information. Hence, to make the

message decodeable, the observed Fisher is replaced by the expected Fisher F(Θ), that is,
∂2L(Θ)

∂Θ∂ΘT
≈

E
[
∂2L(Θ)

∂Θ∂ΘT

]
. This eliminates the infinite regress problem as the precision to which the parameters

need to be encoded, that is, V (Θ) will be independent of the data sample. For a p-dimensional

parameter vector Θ, the elements of the Fisher matrix are given by Fθiθj =

∫
x

∂2L(Θ)

∂θi∂θj
f(x; Θ) dx

where θi and θj are the ith and jth components of the parameter vector. Hence,

I(Θ &D) ≈ − log(V (Θ)h(Θ)) + L(Θ) +
1

2V (Θ)

∫
V (Θ)

zTF(Θ)z dV

To simplify the integral, define the transformation y = B−1z such that zTF(Θ)z = yTy. Let g(Φ)
be the transformed prior density of h(Θ), and let U(Φ) be the volume of uncertainty corresponding
to V (Θ). Then,

g(Φ) = h(Θ)
dV (Θ)

dU(Φ)
=

h(Θ)

Jacobian(B−1)

As F(Θ) is a symmetric and positive semi-definite matrix, Jacobian(B−1) =
√
|F(Θ)|, where |·| is the

determinant operator. The reparameterization does not have any effect on the total message length,
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as it is shown to be invariant under non-linear transformations (Oliver and Baxter, 1994). Hence,

I(Φ &D) ≈ − log(U(Φ)g(Φ)) + L(Φ) +
1

2
E [yTy]

Further, E [yTy] = pqpU(Φ)
2
p , where is qp is the p-dimensional optimal quantizing lattice constant

(Conway and Sloane, 1984), and hence,

I(Φ &D) ≈ − log(U(Φ)g(Φ)) + L(Φ) +
p

2
κpU(Φ)

2
p

To find the optimal partitioning which minimizes the total message length, we have

∂ I(Φ &D)

∂U(Φ)
= 0 =⇒ U(Φ) = q

− p
2

p and V (Θ) =
q
− p

2
p√
|F(Θ)|

Consequently, E [yTy] = p and I(Φ & D) =
p

2
log qp − log g(Φ) + L(Φ) +

p

2
. After substituting

the expression for g(Φ) in the above equation, the resulting expression for the total message length
becomes

I(Θ &D) =
p

2
log qp − log

h(Θ)√
|F(Θ)|︸ ︷︷ ︸

first part: I(Θ)

+ L(Θ) +
p

2︸ ︷︷ ︸
second part:I(D|Θ)

(2.8)

Equation 2.8 is the message length formulation according to the Wallace and Freeman (1987) approx-
imation. Minimizing the above equation gives the MML estimate of Θ as

Θ̂MML = arg min
Θ

I(Θ &D)

This thesis explores the practical use of this approximation in inference problems of various prob-
ability distributions. More generally, the computation of the MML estimates requires a suitable prior
h(Θ) and the computation of the determinant of the Fisher information matrix |F(Θ)|. Based on the
final form of I(Θ &D), there might be analytical solutions for the MML estimates, or in the absence
of closed-form solutions, some numerical optimization techniques need to be employed to infer the
estimates. As an example application of the Wallace and Freeman (1987) approximation that leads
to a closed-form analytical estimate, the MML-based inference of the parameters of the univariate
Gaussian distribution using the Wallace and Freeman (1987) approximation is discussed next.

2.4.3 MML estimators of the univariate Gaussian distribution

The probability density function of the univariate Gaussian distribution is

f(x;µ, σ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
,

where x ∈ R, and Θ = (µ, σ) are the parameters denoting the mean and standard deviation respec-
tively. Given data D = {x1, . . . , xN}, the negative log-likelihood L is

L(D|Θ) =
N

2
log(2π) +N log σ +

1

2σ2

N∑
i=1

(xi − µ)2
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The maximum likelihood estimates are obtained by minimizing the negative log-likelihood expression
and are given by

µ̂ML =
1

N

N∑
i=1

xi and σ̂2
ML =

1

N

N∑
i=1

(xi − µ̂ML)2

Prior density of the parameters: To formulate the message length expression based on the Wallace
and Freeman (1987) method, a prior h(µ, σ) should be defined and the determinant of the Fisher
information |F(µ, σ)| needs to be computed. In the context of MML-based inference, Wallace and
Boulton (1968) assume that µ and log σ are drawn from a uniform distribution with prespecified ranges

Rµ and Rσ respectively. This results in the joint prior density to be h(µ, σ) =
1

Rµ
× 1

σRσ
(assuming

the individual priors are independent).

Fisher information: To compute the determinant of the Fisher matrix, the expectation of the second
order partial derivatives of the negative log-likelihood with respect to µ and σ needs to be evaluated.
The first order partial derivatives are given by

∂L
∂µ

= − 1

σ2

N∑
i=1

(xi − µ) and
∂L
∂σ

=
N

σ
− 1

σ3

N∑
i=1

(xi − µ)2

The second order derivatives are, therefore,

∂2L
∂µ2

=
N

σ2
and

∂2L
∂σ2

= −N
σ2

+
3

σ4

N∑
i=1

(xi − µ)2 and
∂2L
∂µ∂σ

=
2

σ3

N∑
i=1

(xi − µ)

It is to be noted that for a random variable X sampled from the Gaussian distribution, the expectations
are given by E[X] = µ and E[(X − µ)2] = σ2. Hence, we have

E
[
∂2L
∂µ2

]
=
N

σ2
and E

[
∂2L
∂σ2

]
=

2N

σ2
and E

[
∂2L
∂µ∂σ

]
= 0

so that |F(µ, σ)|=
∣∣∣∣∣ Nσ2 0

0 2N
σ2

∣∣∣∣∣ =
2N2

σ4

Message length formulation: On substituting the prior h(µ, σ), the determinant of the Fisher |F(µ, σ)|,
and the negative log-likelihood L in Equation 2.8, the total message length expression to encode the
parameters Θ = (µ, σ) and the data D is given by

I(Θ &D) = (N − 1) log σ +
1

2σ2

N∑
i=1

(xi − µ)2 + constant (2.9)

The MML estimates of µ and σ that minimize I correspond to solutions of
∂I

∂µ
= 0 and

∂I

∂σ
= 0, and

are as follows

µ̂MML =
1

N

N∑
i=1

xi and σ̂2
MML =

1

N − 1

N∑
i=1

(xi − µ̂)2 (2.10)

Note that the MML estimate of σ has (N − 1) in the denominator, which is the unbiased version of
the maximum likelihood estimate.

2.4.4 Statistical consistency of the MML estimator

In this section, a proof is provided for the statistical consistency of the MML parameter estimator
derived using the Wallace and Freeman (1987) approximation. Given a parameter space ΘS ⊂ Rd,
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let Θ0 ∈ ΘS be the true parameter of a probability distribution characterized by f(x; Θ). Let
D = {x1, . . . ,xN} be a sample of size N randomly drawn from the distribution. Then, an estimator

Θ̂ ∈ ΘS is said to be consistent if Θ̂
a.s.−−→ Θ as N → ∞, that is, Θ̂ almost surely (a.s.) converges

to Θ. Alternatively, if Θ̂ is obtained by maximizing an objective function, say M(D,Θ), then for

consistency, we need that sup
Θ∈ΘS

‖M(D,Θ)−M(D,Θ0)‖a.s.−−→ 0, where M(D,Θ) is continuous and has

a unique maximum at Θ = Θ0 (Newey and McFadden, 1994). So, we need to establish that

Pr

(
lim
N→∞

sup
Θ∈ΘS

‖M(D,Θ)−M(D,Θ0)‖= 0

)
= 1 (2.11)

In our proof that follows, we invoke the uniform strong law of large numbers (Newey and McFad-
den, 1994), which states that, for a compact parameter space ΘS and an upper-continuous function
F (x,Θ), if there exists a function φ(x) such that E[φ(x)] < ∞ and F (x,Θ) ≤ φ(x)∀x,Θ, then

1

N

N∑
i=1

F (xi,Θ)
a.s.−−→ E[F (x,Θ)] uniformly.

Proof. We outline the proof of the convergence of the MML estimator based on the argument of the
proof of consistency of the maximum likelihood estimator (Wald, 1949; Lebanon, 2008). The MML
estimator Θ̂ minimizes the message length expression I(Θ,D) given by Equation 2.8. If we consider

M(D,Θ) = −I(Θ,D)

N
, then Θ̂ satisfies M(D, Θ̂) = sup

Θ∈ΘS

M(D,Θ). On rearranging the terms in

Equation 2.8 and expressing |F(Θ)|= Nd|F1(Θ)|, where |F1(Θ)| is the determinant of the Fisher
information matrix corresponding to a single datum, we have

M(D,Θ) = − d

2N
(1 + log qd) +

1

N
log

h(Θ)√
|F1(Θ)|

− d

2N
logN +

1

N

N∑
i=1

log f(xi,Θ)

The MML estimator equivalently maximizes the following expression for a known Θ0:

M(D,Θ)−M(D,Θ0) =
1

N

(
log

h(Θ)√
|F1(Θ)|

− log
h(Θ0)√
|F1(Θ0)|

)
+

1

N

N∑
i=1

(log f(xi,Θ)− log f(xi,Θ0))

Let M(x,Θ) =
1

N
log

h(Θ)√
|F1(Θ)|

+ log f(x,Θ) and let F (x,Θ) = M(x,Θ)−M(x,Θ0). Then,

M(D,Θ) =
1

N

N∑
i=1

M(xi,Θ) + constant, and
1

N

N∑
i=1

F (xi,Θ) = M(D,Θ)−M(D,Θ0) (2.12)

Now, if we assume the existence of a suitable φ(x) such that E[φ(x)] is finite and F (x,Θ) ≤
φ(x)∀x,Θ (Wald, 1949), then F (x,Θ) satisfies the conditions required for invoking the uniform
strong law of large numbers. Further, we have

E[F (x,Θ)] = 0 + lim
N→∞

1

N

N∑
i=1

log
f(xi,Θ)

f(xi,Θ0)
= EΘ0

[
log

f(x,Θ)

f(x,Θ0)

]
= −DKL(fΘ0 ||fΘ)

where DKL(fΘ0 ||fΘ) is the KL distance (Section 2.5.2) between the two distributions f(x; Θ0) and
f(x; Θ). As DKL(fΘ0 ||fΘ) ≥ 0, we have E[F (x,Θ)] ≤ 0 (equality only when Θ = Θ0).

For some ε > 0, consider the parameter space Sε = {Θ ∈ ΘS : ‖Θ − Θ0‖≥ ε}. We note that
E[F (x,Θ)] is strictly negative in Sε and consequently, the maximum value or sup

Θ∈Sε
E[F (xi,Θ)] < 0.
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Thus, by the uniform strong law of large numbers, we can assert that there exists Nε such that

∀N > Nε, we have sup
Θ∈Sε

1

N

N∑
i=1

F (xi,Θ) < 0 with probability 1. However, since the MML es-

timator Θ̂ ensures that Equation 2.12 is maximized, we have
1

N

N∑
i=1

F (xi, Θ̂) ≥ 0. This implies

that Θ̂ /∈ Sε. Since ε > 0 can be made arbitrarily small, we have
1

N

N∑
i=1

F (xi, Θ̂)
a.s.−−→ 0, that

is, Pr

(
lim
N→∞

sup
Θ∈ΘS

1

N

N∑
i=1

F (xi,Θ) = 0

)
= 1. As F (x,Θ) relates to the message length expression

(Equation 2.12), we have showed that Equation 2.11 holds thus, establishing the consistency of the
MML estimator.

In the MML framework, as N → ∞, for a given parameter Θ, the second part of the message
corresponding to the negative log-likelihood keeps on increasing while there is only a miniscule increase
in the first part. Thus, the contribution to the total message length will be mainly due to the second
part. Hence, asymptotically, the MML estimator converges to the ML estimator.

A note on the statistical invariance of the MML estimator: Another important property of the MML
estimator is that it is invariant to non-linear invertible transformations of the parameter space (Oliver
and Baxter, 1994). If T (Θ) = Θ′ defines some transformation, then we have I(Θ′,D) = I(Θ,D). This
is because both the prior density h(Θ) and the Fisher matrix F(Θ) are also transformed accordingly
thus, maintaining the same message length expression. If J denotes the Jacobian matrix of the

transformation, that is, J =
∂Θ′

∂Θ
and |J | its determinant, then the transformed prior density is

given by h(Θ′) =
h(Θ)

|J | and the transformed Fisher is F(Θ) = JTF(Θ′)J . The determinant of the

transformed Fisher is thus, |F(Θ)|= |J |2|F(Θ′)|, so that
h(Θ′)√
|F(Θ′)|

=
h(Θ)√
|F(Θ)|

. Further, as the

negative log-likelihood is also invariant, the total message length expression (Equation 2.8) in the
transformed parameter space remains unchanged, that is, I(Θ′,D) = I(Θ,D).

2.5 Comparing parameter estimators of different methods

The different estimation methods discussed before, namely the ML, MAP, and MML result in esti-
mators that optimize different objectives. If the negative log-likelihood is used as the comparison
criterion, the ML estimators will have a lower value compared to the others. Similarly, the MML esti-
mators will have a lower message length. As each estimation technique optimizes a different objective
function, we need to find a metric that impartially evaluates the different estimates. The mean squared
error of the estimates and Kullback-Leibler (KL) distance (Kullback and Leibler, 1951) are, therefore,
used to compare the various estimates. These two metrics serve as neutral metrics because they are
not directly optimized using any of the estimation methods and thus, provide for a fair comparison of
the various estimators. The estimators are also compared using statistical hypothesis testing in order
to test if the estimators diverge from the true parameter values.

2.5.1 Mean squared error of the estimates

For a parameter vector Θ, and its estimate Θ̂, the mean squared error (MSE) is given by E[(Θ̂−Θ)2].
Further, the MSE can be decomposed into bias and variance terms, as given below (Lebanon, 2010;
Taboga, 2012)

MSE = E[(Θ̂−Θ)2] = Bias2(Θ̂) + trace(Var(Θ̂)) (2.13)
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where Bias2(Θ̂) = ‖E[Θ̂]−Θ‖2 and Var(Θ̂) is the covariance matrix of the estimator.

In the specific case of a parameter vector that contains only one free parameter θ, the expression
for MSE, given the parameter estimate θ̂, decomposes as follows

MSE = E[(θ̂ − θ)2] = (E[θ̂]− θ)2︸ ︷︷ ︸
Bias2(θ̂)

+E[(θ̂ − E[θ̂])2]︸ ︷︷ ︸
Variance(θ̂)

(2.14)

Ideally, it is expected that the estimates result in low MSE values, which depends on the bias
and variance of the parameter estimates. An estimate that results in lower values of MSE is usually
preferred over the other estimates.

2.5.2 Kullback-Leibler distance

The Kullback-Leibler (KL) distance (Kullback and Leibler, 1951) is a similarity measure used to deter-
mine the “distance” between the true distribution and the distribution with the estimated parameters.
Let f(x; Θf ) and g(x; Θg) be two probability distributions with parameters Θf and Θg respectively.
The KL distance between any two distributions is given by

DKL(f ||g) =

∫
x
f(x; Θf ) log

f(x; Θf )

g(x; Θg)
dx = Ef

[
log

f(x; Θf )

g(x; Θg)

]
(2.15)

An estimate that results in a lower KL distance is considered a better estimate. In order to compare
the different parameter estimators, the KL distance can be used if the true distribution is known. For
a distribution f(x; Θ), if Θ̂ corresponds to an estimator, then the KL distance between the true and
the distribution with estimated parameters will be

DKL = Ef(x,Θ)

[
log

f(x; Θ)

f(x; Θ̂)

]

2.6 Summary

This chapter discussed the various methods employed in model selection and inference. To select an
optimal model to describe the given data, the likelihood ratio test and information-theoretic criteria
based MDL, BIC, AIC, and MML are outlined. The scope and limitations of the approaches based
on these criteria are elaborated. In summary, the likelihood ratio test is employed in the case of
evaluating nested models, and fails to generalize well for models (such as mixtures) that do not
satisfy this property. Further, the criteria for model selection, such as MDL, BIC, and AIC lead to
simplifying assumptions, where the model complexity is treated as a function of just the number of
model parameters. The formulations resulting from these criteria indicate that the model parameters
do not contribute to quantifying the model complexity. As such, these criteria have some utility in
distinguishing among model classes but not among the constituent models.

In order to rigorously account for the model complexity, this chapter described the generalized
MML framework, which formulates the message length expression to jointly describe the hypothesis
and the data given the hypothesis. The MML framework will be used in the subsequent chapters to
estimate the model parameters and to select the model classes. The ability of the MML framework
to distinguish among model classes is demonstrated through applications such as mixture modelling
(Chapters 5 and 6), selection of optimal number of terms in the decomposition of orthogonal ba-
sis functions (Chapter 7), and evaluation of competing representations of protein folding patterns
(Chapter 8).

It should be noted that inference using the MML framework does not require the actual code
to be constructed, as it is sufficient to know the associated message length. As described in the



24 CHAPTER 2. MODEL SELECTION AND INFERENCE

previous section, the Wallace and Freeman (1987) method can be used to compute the code length by
decomposing the inference problem into two parts. The method involves three steps:

1. Define the prior density of the parameters.

2. Computation of the determinant of the expected Fisher information matrix. This requires cal-
culating the expectations of the second order partial derivatives of the negative log-likelihood
function of the data with respect to the parameters.

3. Formulation of the two-part message length expression, and its minimization to obtain the MML
estimates.

The above approach is used to estimate the parameters of the probability distributions discussed in
the following chapters.



Chapter 3

MML inference of Laplace &
multivariate Gaussian distributions

3.1 Introduction

In this chapter, we consider the modelling of data in the Euclidean space. The probability distributions
that are commonly used in this context are the Laplace and the Gaussian distributions, which are
important for statistical inference and for modelling symmetrically distributed data. The multivariate
Laplace distributions (Kotz et al., 2001; Eltoft et al., 2006) have not received much attention and,
hence, we restrict to the univariate case in this chapter. In contrast, the multivariate Gaussian
distributions are widely used and, hence, we consider their multivariate forms.

The Laplace distribution is the model of choice in areas as diverse as signal processing (Eltoft
et al., 2006), image denoising (Rabbani et al., 2006), gene expression studies (Bhowmick et al., 2006),
market risk prediction (Haas et al., 2006), and machine learning (Cord et al., 2006). This is because
the inference of parameters of this distribution is not severely affected by outliers in the data. This
is due to the fact that the negative logarithm of the probability density of the Laplace distribution
varies linearly with the absolute deviation of the data from the mean.

The Gaussian distribution and its mixtures are used in varied statistical pattern recognition tasks
such as classification and unsupervised learning of data (Jain and Dubes, 1988). While the Gaussian
distribution is sensitive to outliers because of the quadratic nature of the contributions of the indi-
vidual deviations of the data, its computational tractability has motivated its use in several research
disciplines (McLachlan and Peel, 2000). The wide applicability of these two distributions motivates
their study in this chapter.

Traditionally, in models that use these distributions, the parameters are inferred based on the ML
estimation method. However, the ML estimates are known to be biased and issues related with their use
in modelling Euclidean data, especially with Gaussian distributions, have been previously documented
(Gray, 1994; Lo, 2011). Given the ubiquitous nature of the Laplace and Gaussian distributions, it
is important to have estimators that are unbiased and are statistically invariant. To this end, we
consider the MML-based inference of the parameters of these distributions.

The Wallace and Freeman (1987) method of parameter estimation has been previously used in the
inference of parameters of several probability distributions (Wallace, 2005). We discussed an example
in the case of inference of the parameters of the univariate Gaussian distribution in Section 2.4. Others
include the multinomial (Boulton and Wallace, 1969), Poisson (Wallace and Dowe, 1994a), von Mises
distributions (Wallace and Dowe, 1994b; Dowe et al., 1996c), Student’s t-distribution (Agusta and
Dowe, 2002), Gamma (Ziou and Bouguila, 2004), generalized Dirichlet (Bouguila and Ziou, 2007),
and inverse Gaussian (Schmidt and Makalic, 2012). However, this has not been used for the Laplace
or the multivariate Gaussian distributions.

This chapter is organized as follows: we present a derivation of the MML estimators of the pa-
rameters of the Laplace distribution in Section 3.2. In this context, we explain the steps involved

25
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in parameter estimation using the Wallace and Freeman (1987) method for the Laplace distribution.
The resulting MML estimators are compared with the ML counterparts in Section 3.3. The derived
estimators are used in the analysis of the variation in the message lengths and the appropriate se-
lection of a univariate Gaussian or a Laplace distribution depending on the amount of observed data
in Section 3.4. This section also examines the behaviour of these distributions when modelling sim-
ulated and real-world data. Section 3.5 outlines the MML-based inference of the parameters of the
multivariate Gaussian distributions. This section also demonstrates that the resulting MML estimator
corresponds to the unbiased estimator that is well known.

3.2 Laplace distribution

The probability density of a Laplace distribution is given by

f(x;µ, b) =
1

2b
exp

{
−|x− µ|

b

}
,

where x ∈ R and the parameters Θ = (µ, b) are the location (mean) and scale of the distribution
respectively. Given data D = {x1, . . . , xN}, the negative log-likelihood L of the data is

L(D|Θ) = N log(2b) +
1

b

N∑
i=1

|xi − µ|

The maximum likelihood estimates are obtained by minimizing the negative log-likelihood expression
L(D|Θ) and are given by

µ̂ML = median{x1, . . . , xN} and b̂ML =
1

N

N∑
i=1

|xi − µ̂|

Prior density of the parameters: To derive the MML-based estimates using the Wallace and Freeman
(1987) method, a prior density on the parameters is chosen in a similar manner as the univariate
Gaussian case. Under the assumption that µ and log b follow a uniform distribution in the intervals
Rµ and Rb respectively, and are independent of each other, their joint prior density is given by

h(µ, b) =
1

Rµ
× 1

bRb
.

Fisher information: While computing the Fisher information associated with the parameters of the
Laplace distribution, it is to be noted that the negative log-likelihood function is continuous but not
everywhere differentiable with respect to µ. The procedure to compute the Fisher in such a case1 as
described in Daniels (1961) is outlined here. Consider the negative log-likelihood associated with a

datum x ∈ D given by `(x|µ, b) = log(2b) +
|x− µ|
b

.

The first derivative of ` with respect to µ is
∂`

∂µ
= −1

b
if x < µ and

∂`

∂µ
=

1

b
if x > µ. Therefore,

the Fisher information for the location parameter µ is

F(µ) =

∫ µ

−∞

(
∂`

∂µ

)2

f(x;µ, b)dx+

∫ ∞
µ

(
∂`

∂µ

)2

f(x;µ, b)dx =
1

b2

The first and second derivatives of ` with respect to b are

∂`

∂b
=

1

b
− 1

b2
|x− µ| and

∂2`

∂b2
= − 1

b2
+

2

b3
|x− µ|

1http://www.emakalic.org/blog/?p=71
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For a random variable X sampled from a Laplace distribution, we have E{|X − µ|} = b. Hence, the

Fisher information for the scale parameter is F(b) = E
[
∂2`

∂b2

]
=

1

b2
. Further, the second order partial

derivatives of ` with respect to µ and b are
∂2`

∂µ∂b
= − 1

b2
if x < µ and

∂2`

∂µ∂b
=

1

b2
if x > µ. Using the

definition of the expected Fisher and the symmetric nature of the Laplace distribution about µ, we
have

E
[
∂2`

∂µ∂b

]
=

∫ µ

−∞
− 1

b2
f(x;µ, b)dx+

∫ ∞
µ

1

b2
f(x;µ, b)dx = 0

Hence, the determinant of the expected Fisher associated with the entire data D is

|F(µ, b)|=
∣∣∣∣∣Nb2 0

0 N
b2

∣∣∣∣∣ =
N2

b4

Message length formulation: On substituting the prior h(µ, b), the determinant of the Fisher |F(µ, b)|,
and the negative log-likelihood L in Equation 2.8, the total message length expression to encode the
parameters and the data D is given by

I(µ, b,D) = (N − 1) log b+
1

b

N∑
i=1

|xi − µ|+constant (3.1)

To obtain the MML estimates µ̂MML and b̂MML that minimize I, we must solve
∂I

∂µ
= 0 and

∂I

∂b
= 0.

The MML estimates are, therefore, given by

µ̂MML = median{x1, . . . , xN} and b̂MML =
1

N − 1

N∑
i=1

|xi − µ̂MML| (3.2)

Note that the MML estimate of b has (N − 1) in the denominator, similar to the MML estimate of σ
in the case of the Gaussian distribution (Section 2.4.3, Equation 2.10).

3.3 Experimental evaluation of the parameter estimates

The MML estimates are evaluated here by comparing the bias and mean squared error (MSE) values
to those obtained with the ML estimates of the Laplace parameters. Additionally, empirical analyses
using the MML framework are presented.

3.3.1 Bias and Mean Squared Error

The MSE of a parameter θ can be decomposed into the sum of bias squared and variance terms
(Equation 2.14). The ML estimate of the mean µ is the same as the respective MML estimate for the
Laplace distribution. However, the ML and MML estimates of the scale parameter b are different.

Experimental setup: In this section, it is empirically demonstrated that the MML estimator for the
Laplace scale parameter minimizes the bias when compared to its ML estimator. Random samples of
size N = {3, 4, 5, 10, 15, 25, 50, 100, 1000} are generated from a Laplace distribution with mean 0 and
scale 1. For each value of N , the ML and MML estimators of the scale parameter are computed and
the process is repeated 100 times. The resulting estimators in these 100 iterations are compared using
box-whisker plots.

The red curve in Figure 3.1 connects the medians of the estimate values for varying values of N .
The ML estimators in Figure 3.1(a) are distant from the true scale value (of 1) when compared with
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the MML estimators in Figure 3.1(b). This difference is particularly evident at smaller sample sizes,
and becomes insignificant as the sample size increases. Hence, it is observed that the bias in the case of
ML estimators is more pronounced, as compared to the MML estimators where the bias is negligible.
The MML estimator for the Laplace scale parameter, therefore, serves as an unbiased estimator.
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Figure 3.1: Comparison of the ML and MML estimators of the Laplace scale parameter.

While bias measures the difference between the expected value of estimator and its actual value,
the MSE captures the net average squared error in estimation. Let b̂ML and b̂MML be the ML and
MML estimates of the scale parameter b, respectively. Table 3.1 shows both the bias squared and
the MSE in the estimation of scale parameter for varying values of N averaged over 100 iterations
(bold values indicate the best values, that is, smallest bias and MSE). Although the Laplace MML
estimator has the smallest bias in comparison to that of the ML estimator, it does not minimize the
expected squared error. This is due to the high variability of the estimated scale parameter values.
In Figure 3.1(b), for N = {3, 4, 5}, one can see the relatively large variance in the estimated scale
parameter. Since the MSE is a combination of bias and variance, it is greater for the Laplace MML
estimator. This is reflected in the MSE values for smaller samples. However, as the sample size
increases, both the ML and MML estimators converge to their theoretical values, which for a large N
are practically the same.

Table 3.1: Comparison of the ML & MML estimates of the Laplace scale parameter.
Sample Bias squared Mean squared error

size
b̂ML b̂MML b̂ML b̂MML(N)

3 5.888e-2 1.851e-2 2.925e-1 5.442e-1
4 3.020e-2 1.034e-2 2.588e-1 4.166e-1
5 2.767e-2 1.777e-3 1.563e-1 2.027e-1
10 4.586e-3 1.530e-3 9.640e-2 1.217e-1
15 5.050e-3 2.209e-5 6.349e-2 6.711e-2
25 4.558e-4 3.818e-4 3.573e-2 3.878e-2
50 8.446e-5 1.208e-4 1.500e-2 1.566e-2
100 1.332e-4 2.624e-6 9.091e-3 9.148e-3
1000 1.129e-5 5.617e-6 9.915e-4 9.881e-4

3.3.2 Evaluating the distributions using message length

In this section, the message lengths obtained due to modelling using Gaussian and Laplace distributions
are compared. An experiment is conducted as follows: data is randomly sampled from a known
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Gaussian or a Laplace distribution, and the parameters of both distributions are inferred separately.
It is conceivable that if the true distribution is a Gaussian/Laplace, then the fit to the data would be
better if the same distribution type is used. In other words, the compression in message length is better
when it is modelled using the same type of distribution. This is expected and is done as a validation
check to ensure that the derived MML formulation for the Laplace is consistent with the observation.
The optimal code lengths are computed by substituting the MML estimates of Gaussian and Laplace
distributions (Equations 2.10 and 3.2) in their respective message length expressions (Equations 2.9
and 3.1).

As an example, a random sample of 100 data points is generated from the two distributions.
The true values of the mean µ and the spread parameter (standard deviation σ for a Gaussian and
scale parameter b for a Laplace) are taken to be 0 and 1 respectively. In Figure 3.2, the probability
density of the true distribution corresponding to the sampled data is plotted as a red curve. Using
this empirical data, the parameters of the Gaussian and Laplace distributions are estimated using
the MML framework. As expected, in Figure 3.2(a), which represents the case when the data is
sampled from the Gaussian distribution, the Gaussian fit (blue) overlaps almost entirely with the
original distribution (red) and is indicative of a good fit. The Laplace density (green) deviates from
the original distribution. The same behaviour is observed in Figure 3.2(b), where the true distribution
is Laplace, and naturally, a corresponding Laplace (green) models the data better.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-6 -4 -2  0  2  4  6

p
ro

b
ab

il
it

y
 d

en
si

ty

x

original
Gaussian

Laplace

(a) Original distribution: Gaussian

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-6 -4 -2  0  2  4  6

p
ro

b
ab

il
it

y
 d

en
si

ty

x

original
Gaussian

Laplace

(b) Original distribution: Laplace

Figure 3.2: Modelling data using both the Gaussian and Laplace distributions.

Table 3.2 provides a comparison of the estimates of the two distributions. For this example, when
the true distribution is Gaussian, the corresponding Gaussian fit results in a total message length of
∼ 1204 bits, while the Laplace approximation has a total message length of ∼ 1208 bits, that is, an
additional compression of ∼ 4 bits is achieved when modelled using the Gaussian distribution. Thus,
as per Equation 2.5, the Gaussian hypothesis is 24 times more likely than the Laplace. Similarly,
when the true distribution is Laplace, the Laplace model results in a gain of ∼ 5 bits in compression
over the corresponding Gaussian fit. Thus, in this case, the Laplace hypothesis is 25 times more
likely compared to the Gaussian model. This example demonstrates how the MML criterion is able
to compare two competing hypotheses on some given data.

Table 3.2: Comparison of the MML-based estimates (corresponding to Figure 3.2)
True True True Gaussian approximation Laplace approximation

distribution mean spread µ̂ σ̂ I(µ̂, σ̂,D) µ̂ b̂ I(µ̂, b̂,D)

Gaussian 0 1 -0.0618 0.9533 1204.20 -0.0785 0.7512 1208.52

Laplace 0 1 -0.2987 1.2047 1237.64 -0.1390 0.8900 1232.74
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The above experiment is repeated 100 times, and the message lengths corresponding to each
simulation are shown in Figure 3.3. The results demonstrate that, the total message length used to
encode the observed data is lower when the data is modelled by the same distribution as the underlying
one. In some cases, it might happen that a Gaussian distribution would better model data that was
generated from a Laplace and vice-versa, as the data is being randomly sampled. However, this is
explained in terms of the total message length. The model that results in the least total message
length is selected from a set of competing models.
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Figure 3.3: Comparison of message lengths over 100 iterations

3.4 Discrimination of Gaussian & Laplace distributions

Given data D = {x1, . . . , xN} with no knowledge of the underlying distribution, one needs to determine
whether the Laplace or the univariate Gaussian is best suited to model the data. In this context, we
demonstrate how the difference in total message lengths due to the two distributions can be used to
select a suitable model. For this, we analyze the variation in the total message lengths with increasing
amount of data.

For a given data D, let (µ̂, σ̂) and (µ̂, b̂) be the MML estimates of the two distributions. Let
IG(µ̂, σ̂,D) and IL(µ̂, b̂,D) be the optimal message lengths corresponding to the Gaussian and Laplace
distributions respectively. The message length if the data is encoded using the Gaussian distribution
is given by Equation 2.9 and the minimum message length expression if the data is encoded using
the Laplace distribution is given by Equation 3.1. The optimal message lengths are obtained by
substituting the MML estimates of the parameters in these expressions. The difference in their optimal
message lengths is

∆Imin = IL(µ̂, b̂,D)− IG(µ̂, σ̂,D) =
N

2
log

2

π
− 1

2
log 2 +

N − 1

2
+ (N − 1) log b̂− (N − 1) log σ̂

If the Gaussian distribution has a lower message length compared to the Laplace, then ∆Imin > 0. In
such a case, as per the MML framework, the Gaussian distribution results in better compression and
is preferred over the Laplace to model the given data.

3.4.1 Asymptotic properties of the difference in message lengths

The derivation of the asymptotic distributions for the logarithm of ratio of maximum likelihood (RML)
is presented in Kundu (2005). A similar approach is adopted here to derive the asymptotic distributions
of ∆Imin. The proofs are similar except that the random variable in the current context is ∆Imin instead
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of the logarithm of RML. The theoretical asymptotic results of ∆Imin are derived here followed by an
empirical evaluation of these results.

Case 1: Data follow Gaussian distribution

Based on Theorem 1 of Kundu (2005), it can be concluded that under the assumption that the data
follow a Gaussian distribution, the distribution of ∆Imin is asymptotically normally distributed with
mean EG[∆Imin] and variance VG[∆Imin]. Further, as the sample size N → ∞, let the asymptotic
MML estimates be µ̃ and b̃, that is, µ̂→ µ̃ and b̂→ b̃, where

EG[IL(µ̃, b̃,D)] = min
µ,b

EG[IL(µ, b,D)]

The expressions for µ̃, b̃, EG[∆I], and VN [∆I] are derived using Equation 3.1. We have

EG[IL(µ, b,D)] = cL + (N − 1) log b+
N

b
EG[|X − µ|]

where the constant cL = 1+log κ2 +log(RµRb)+logN+N log(2/ε). The values of µ̃ and b̃ correspond
to those that minimize EG[IL(µ, b,D)]. Since X ∼ Gaussian(µ, σ), therefore,

µ̃ = µ and b̃ =

(
N

N − 1

)√
2

π
σ

Since the data is sampled from a Gaussian distribution, the distribution of ∆Imin will be independent
of µ and σ, therefore, without loss of generality, we assume µ = 0 and σ = 1.

EG[∆Imin] ≈ EG[IL(µ̃, b̃,D)− IG(0, 1,D)]

= EG

[
N

2
log

(
2

π

)
− 1

2

N∑
i=1

x2
i + (N − 1) log b̃+

1

b̃

N∑
i=1

|xi − µ̃|
]

=
N

2
log

(
2

π

)
− N

2
EG
[
x2
]

+ (N − 1) log b̃+
N

b̃
EG[|x|]

EG[∆Imin]

N
=

(
1− 1

2N

)
log

(
2

π

)
+

1

2
− 1

N
−
(
N − 1

N

)
log

(
N − 1

N

)
lim
N→∞

EG[∆Imin]

N
= log

(
2

π

)
+

1

2
= 0.0484

and VG[∆Imin] ≈ VG[IL(µ̃, b̃,D)− IG(0, 1,D)]

VG[∆Imin]

N
= VG

(
−1

2
x2 +

N − 1

N

√
π

2
|x|
)

=
1

4
VG(x2) +

(
N − 1

N

)2 π

2
VG(|x|)−

(
N − 1

N

)√
π

2
covG(x2, |x|)

=
1

2
+

(
N − 1

N

)2 π

2

(
1− 2

π

)
−
(
N − 1

N

)
lim
N→∞

VG[∆Imin]

N
=

1

2
+
π

2

(
1− 2

π

)
− 1 = 0.0708
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Case 2: Data follow Laplace distribution

Based on Theorem 2 of Kundu (2005), it is established that under the assumption that the data is
sampled from a Laplace distribution, the distribution of ∆Imin is asymptotically normally distributed
with mean EL[∆Imin] and variance VL[∆Imin]. Also, as the sample size N → ∞, µ̂ → µ̃ and σ̂ → σ̃,
where

EL[IG(µ̃, σ̃,D)] = min
µ,σ

EL[IG(µ, σ,D)]

To compute µ̃, σ̃, EL[∆Imin], and VL[∆Imin], we use the message length expression in Equation 2.9
based on which we have

EL[IG(µ, σ,D)] = cG + (N − 1) log σ +
N

2σ2
EL[(x− µ)2]

where the constant cG = 1 + log κ2 + log(RµRσ) + (1/2) log(2N2) + (N/2) log(2π/ε2). The expressions
for µ̃ and σ̃ correspond to those that minimize EL[IG(µ, σ,D)]. Since X ∼ Laplace(µ, b), we obtain
the following result:

µ̃ = µ and σ̃ =

√
2N

N − 1
b

Since the data follow a Laplace distribution, the distribution of ∆Imin will be independent of µ and
b. Hence, without loss of generality, we can assume µ = 0 and b = 1, obtaining

EL[∆Imin] ≈ EL[IL(0, 1,D)− IG(µ̃, σ̃,D)]

= EL

[
N

2
log

(
2

π

)
− (N − 1) log σ̃ − 1

2σ̃2

N∑
i=1

x2
i +

N∑
i=1

|xi|
]

=
N

2
log

(
2

π

)
− (N − 1) log σ̃ − N

2σ̃2
EL[x2] +NEL[|x|]

EL[∆Imin]

N
=

1

2
log

(
2

π

)
− N − 1

2N
log

(
2N

N − 1

)
+
N + 1

2N

lim
N→∞

EL[∆Imin]

N
= −1

2
log π +

1

2
= −0.0724

and VL[∆Imin] ≈ VL[IL(0, 1,D)− IG(µ̃, σ̃,D)]

= VL

(
− 1

2σ̃2

N∑
i=1

x2
i +

N∑
i=1

|xi|
)

VL[∆Imin]

N
= VL

(
−N − 1

4N
x2 + |x|

)
=

1

16

(
N − 1

N

)2

VL(x2) + VL(|x|)−
(
N − 1

2N

)
covL(x2, |x|)

=
5

4

(
N − 1

N

)2

+ 1− 2

(
N − 1

N

)
lim
N→∞

VL[∆Imin]

N
= 0.25

Discussion about the asymptotic results: In Case 1, the original distribution is Gaussian, and therefore,
it is expected that a corresponding Gaussian distribution would better model the data. This is reflected
by the fact that EG[∆Imin] > 0. Recall that ∆Imin corresponds to the difference in optimal message
lengths of Laplace and Gaussian. Hence, the observation is valid with what one would expect. Based
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Table 3.3: Case 2: Distribution of the difference in minimum
message lengths ∆Imin

Sample Empirical results Theoretical results
size E[∆Imin]

N
V [∆Imin]

N
E[∆Imin]

N
V [∆Imin]

N(N)

2 0.0243 0.0000 0.1776 0.3125
3 -0.0399 0.0026 0.0747 0.2222
4 0.0078 0.0369 0.0314 0.2031
5 -0.0208 0.0352 0.0077 0.2000
10 -0.0223 0.0993 -0.0351 0.2125
15 -0.0346 0.1086 -0.0481 0.2222
25 -0.0512 0.1497 -0.0581 0.2320
50 -0.0577 0.1885 -0.0653 0.2405
100 -0.0651 0.2024 -0.0689 0.2451
1000 -0.0722 0.2390 -0.0720 0.2495

Table 3.4: A comparison of data com-
pression using ML and MML methods.

Sample Encoding Encoding
size (N) using ML using MML

2 1059.90 1000.98
3 987.55 988.24
4 1000.52 982.631
5 958.36 957.52
10 872.19 868.61
15 767.47 766.52
25 587.25 584.27
50 329.15 323.14
100 122.80 118.34
1000 3.29e-13 3.25e-13

on Equation 2.5, a Gaussian model is 2∆Imin more likely than a Laplace distribution. In Case 2, the
original distribution is Laplace, and hence, the theoretical result that EG[∆Imin] < 0 is in agreement.
Again, the log-odds posterior ratio of the Laplace and the Gaussian models is given by 2∆Imin .

Further, for a large sample size N , the distributions of logarithm of RML (Kundu, 2005) and ∆Imin

(shown above) converge to the same distribution. This is expected as for large N , the ML and MML
estimators converge to the same value. For very large amounts of data, the contribution of the negative
log-likelihood to the second part of the total message length outweighs the first part of the message.
The theoretical results are validated empirically with an experiment demonstrating the scenario in
Case 2. From a known Laplace distribution, samples of varying sizes are generated which are then
modelled using both Laplace and Gaussian distributions. The expectation and variance of the optimal
message lengths for both distributions are computed over 1000 simulations. The results are tabulated
in Table 3.3. The theoretical limits (corresponding to Case 2) are computed using the expressions
derived above. It is observed that for larger samples, the experimentally determined expectation and
variance of ∆Imin asymptotically converge to their theoretical limits.

3.4.2 Data Compression (ML vs. MML)

As per the MML framework described in Section 2.4, the posterior log-odds ratio of any two competing
hypotheses is related to the difference in message lengths, that is, the additional compression due to
the better hypothesis (Equation 2.5). If ML estimators as used, the better hypothesis is determined
as the one which results in the maximum value of the likelihood function.

Given data D and two hypotheses, namely Gaussian and Laplace, one can randomly guess (with
equal probability) one of the two distributions that can best model the data. Let this correspond to
a null model description of the data. It requires 1 bit to encode a randomly selected distribution. If
we were to better the null model, the encoding method, on an average, should be conservative and
be less than 1 bit. Since both ML and MML can be used to infer the model probabilities, these can
then be converted into information content. This insight is used to measure the average information
content associated with using the ML and MML methods. Consider the following experiment:

• Randomly choose a distribution (call it hypothesis H, either Gaussian or Laplace) and select
parameters for the distribution from a prespecified range. Generate data from this underlying
distribution. The null model information content will be 1 bit.

• Estimate the ML and MML-based parameters of the data using both the distributions and infer
H′ as per the ML and MML evaluation criteria. The inferred model will have a probability
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higher than its counterpart. Let the inferred model be H′. The information content associated
with this will be I = − log2(Pr(H′|D)) bits.

• SinceH is the true distribution, one would expect that the optimal length of encoding to losslessly
state the data would be I = − log2(Pr(H|D)) bits (Shannon, 1948). If H′ is not same as H, that
would mean Pr(H|D) < Pr(H′|D) and, therefore, I = − log2(Pr(H|D)) > 1 bit. In such a case,
stating the data using a null model would be better. On the contrary, if the inferred model H′
is same as H, then I < 1 bit and there is a saving in information (efficient compression).

• Repeat this experiment several times and compute the average value of I. Both ML and MML
are expected to perform better than the null model. It is to be noted that this procedure can
be used as a basis to judge the degree of compression obtained using ML and MML estimators.

The above experiment is conducted for different values of N and each simulation is repeated 1000
times. Therefore, the null model would result in a total 1000 bits corresponding to each iteration.
Both ML and MML are expected to perform better than the null model. The results shown in Table 3.4
are consistent with this expectation except for when the sample size is 2.

When N = 2, both ML and MML perform worse than the null model. It is interesting to note that
MML is very close to the null. The null model is better on average by 0.98 bits over 1000 iterations. It
is small but it demonstrates the difficulty associated with inferring a model using just two data points.
When N = 3, ML performs marginally better than MML (987.55 vs. 988.24 bits) – a difference of
0.1% is probably not significant. As the sample size increases, the ability to compress data increases
for both ML and MML. However, MML consistently performs better than ML. At larger sample sizes
(N = 1000), the probability of inferring the correct model using both ML and MML is close to 1.

3.4.3 Example applications

This section demonstrates the applicability of MML criterion in choosing one of the Gaussian and
Laplace distributions to model some real-world data. The tests of fit for the Laplace distribution using
real world datasets were discussed by Puig and Stephens (2000). Their test statistics are based on the
empirical distribution function (EDF) and include the families of Cramér-von Mises and Kolmogorov-
Smirnov. We also tested the MML approach on a data set that was used by Kundu (2005). We
use MML as a differentiating metric and our results are consistent with the results in the sources
mentioned.

Example 1: The first data set analyzed by Puig and Stephens (2000) is breaking strengths of yarn,
which contains 100 samples and was originally presented by Duncan (1974). Puig and Stephens (2000)
conclude that the Laplace distribution is a better fit to the data than the Gaussian distribution. They
compute EDF statistics and use tables of significance values to reject the Gaussian assumption. This
behaviour is consistent if we use the MML formulation to encode the data using Gaussian and Laplace
distributions. The respective estimates and the corresponding message lengths are presented in Ta-
ble 3.5. It is observed that the total message length using Laplace distribution (552.006 bits) is smaller
than the message length using the Gaussian distribution (569.736). Hence, the Laplace distribution
is favoured as a better fit to the data.

Example 2: The second data set considered is the flood levels data (Bain and Engelhardt, 1973),
which was discussed by Puig and Stephens (2000). They, however, compared Laplace with a Logistic
distribution and concluded that the Laplace model would just be rejected. For our discussion, we
will compare the Laplace model with the Gaussian. From the minimum message length in Table 3.5,
the Gaussian model would be preferred compared to the Laplace one as there is a difference of ∼ 5
bits. This demonstrates that Laplace is not a model of choice to fit this data as per the MML criterion.
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Example 3: The third data set considered is the ball bearings data (Lawless, 1982) and was analyzed
by Kundu (2005). They concluded that Gaussian was a better fit to the data. The message lengths
in Table 3.5 confirm this. The minimum message length when the data is encoded using Gaussian
distribution is 340.370 bits whereas the length of encoding using a Laplace distribution is 341.869 bits.
Hence, Gaussian would be the preferred model. It is interesting to note that the Gaussian model fares
better than the Laplace model by mere 1.5 bits.

Data set
Gaussian MML estimates Laplace MML estimates

µ̂ σ̂ I(µ̂, σ̂,D) µ̂ b̂ I(µ̂, b̂,D)

Breaking strengths 99.43 12.46 574.737 99.00 8.414 557.007
Flood levels 9.35 4.02 359.175 10.13 3.46 364.157
Ball bearings 4.15 0.53 340.370 4.21 0.44 341.869

Table 3.5: Selection of Gaussian & Laplace distributions based on their message lengths.

3.5 Multivariate Gaussian distribution

The probability density function of a d-variate Gaussian distribution is given by

f(x;µ,C) =
1

(2π)
d
2 |C| 12

exp

{
−1

2
(x− µ)TC−1(x− µ)

}
where xi ∈ Rd, µ, C are the respective mean, covariance matrix, and |C| is the determinant of the
covariance matrix.

3.5.1 Maximum likelihood estimates

Given data D = {x1, . . . ,xN}, the negative log-likelihood L is given by Equation 3.3. To compute the
traditional maximum likelihood estimates, L needs to be minimized. This is achieved by computing
the gradient of the negative log-likelihood function with respect to the parameters and solving the
resultant equations.

L(D|µ,C) =
Nd

2
log(2π) +

N

2
log|C|+1

2

N∑
i=1

(xi − µ)TC−1(xi − µ) (3.3)

The gradient vector of L with respect to µ and the gradient matrix of L with respect to C are

∇µL =
∂L
∂µ

= −
N∑
i=1

C−1(xi − µ) (3.4)

∇CL =
∂L
∂C

=
N

2
C−1 − 1

2

N∑
i=1

C−1(xi − µ)(xi − µ)TC−1

The maximum likelihood estimates are obtained by solving ∇µL = 0 and ∇CL = 0, and are

µ̂ML =
1

N

N∑
i=1

xi and ĈML =
1

N

N∑
i=1

(xi − µ̂ML)(xi − µ̂ML)T

ĈML is known to be a biased estimate of the covariance matrix (Fisher, 1925; Rao, 1945; Blackwell,
1947; Barton, 1961; Basu, 1964; Eaton and Morris, 1970; White, 1982). An unbiased estimator of C
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was proposed by Barton (1961) and is given as

Ĉunbiased =
1

N − 1

N∑
i=1

(xi − µ̂ML)(xi − µ̂ML)T

In addition to the maximum likelihood estimates, Bayesian inference of Gaussian parameters involving
conjugate priors over the parameters has also been dealt with in the literature (Bishop, 2006). However,
the unbiased estimate of the covariance matrix, as determined by the sample covariance, is typically
used in the analysis of Gaussian distributions.

3.5.2 Minimum message length estimation

The MML estimation of parameters of the multivariate Gaussian distribution has been previously
attempted by Agusta and Dowe (2003). However, citing mathematical challenges, they used the
MMLD approximation (Lam, 2000; Fitzgibbon et al., 2002). Wallace (2005) explored the multivariate
Gaussian case using an “informative” conjugate prior.

As described in Section 2.4.2, the message length formulation based on the generalized framework
introduced by Wallace and Freeman (1987) requires a reasonable prior h(Θ) on the hypothesis and the
computation of the determinant of the Fisher information matrix |F(Θ)| of the expected second-order
partial derivatives of the negative log-likelihood function, L(D|Θ). The MML framework requires the
statement of parameters to a finite precision. The optimal precision is related to the Fisher informa-
tion and in conjunction with a reasonable prior, the probability of parameters is computed.

Prior density of the parameters: A flat prior is usually chosen on each of the d dimensions of µ
(Roberts et al., 1998; Oliver et al., 1996) and a conjugate inverted Wishart prior is chosen for the
covariance matrix C (Gauvain and Lee, 1994; Agusta and Dowe, 2003; Bishop, 2006). The joint prior

density of the parameters is then given as h(µ,C) ∝ |C|− d+1
2 . Wallace (2005) provides an alternative

version of the prior density which requires the knowledge of previously seen data. In the absence of
such information, a non-informative prior is considered.

Fisher information of the parameters: The computation of the Fisher information requires the evalu-
ation of the second order partial derivatives of L(D|µ,C). Let |F(µ,C)| represent the determinant of
the Fisher information matrix. This is equal to the product of |F(µ)| and |F(C)| (Oliver et al., 1996;
Roberts et al., 1998), where |F(µ)| and |F(C)| are the respective determinants of Fisher information
matrices due to the parameters µ and C.

On differentiating the gradient vector in Equation 3.4 with respect to µ, we get ∇2
µL = N C−1.

Consequently, |F(µ)|= Nd|C|−1. To compute |F(C)|, Magnus and Neudecker (1988) derived an
analytical expression using the theory of matrix derivatives based on matrix vectorization (Dwyer,
1967). Let C = [cij ] ∀ 1 ≤ i, j ≤ d where cij is the element corresponding to the ith row and jth column
of the matrix. Let v(C) = (c11, . . . , c1d, c22, . . . , c2d, . . . , cdd) be the vector containing the d(d + 1)/2
free parameters that completely describe the symmetric matrix C. Then, the Fisher information due

to the vector of parameters v(C) is equal to |F(C)| and is given as N
d(d+1)

2 2−d|C|−(d+1) (Magnus and
Neudecker, 1988; Bozdogan, 1990). Multiplying the Fisher expressions for µ and C, we get

|F(µ,C)|= N
d(d+3)

2 2−d|C|−(d+2)

Message length formulation: To derive the message length expression to encode data using certain
µ,C, we need to substitute the expressions for h(µ,C), |F(µ,C)|, and the negative log-likelihood
(Equation 3.3) in Equation 2.8 with the number of free parameters as p = d(d + 3)/2. The message
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length expression is then given by

I(µ,C,D) =
(N − 1)

2
log|C|+1

2

N∑
i=1

(xi − µ)TC−1(xi − µ) + constant

To obtain the MML estimates of µ and C, I(µ,C,D) needs to be minimized. The MML estimate
of µ is same as the maximum likelihood estimate. To compute the MML estimate of C, we need to
compute the gradient matrix of I(µ,C,D) with respect to C. On solving the equation ∇CI = 0, the
MML estimate of C is obtained as

∇CI =
(N − 1)

2
C−1 − 1

2

N∑
i=1

C−1(xi − µ)(xi − µ)TC−1

Hence, ĈMML =
1

N − 1

N∑
i=1

(xi − µ̂MML)(xi − µ̂MML)T where µ̂MML = µ̂ML

It is observed that the MML estimate ĈMML is equivalent to the unbiased estimate of the covariance
matrix C, thus, lending credibility for its preference to model Euclidean data over the traditional
maximum likelihood estimate.

3.6 Summary

In this chapter, we considered the modelling of Euclidean data using the Laplace and multivariate
Gaussian distributions. These distributions are useful to model symmetrically distributed data. The
analysis using these distributions is further facilitated by the computationally tractabe forms of their
density functions. To support modelling using these distributions, we must estimate the parameters
of the respective distributions. This chapter presented the derivations of the MML estimates of the
parameters of of the Laplace and multivariate Gaussian distributions using the Wallace and Freeman
(1987) method. The MML estimator of the scale parameter of the Laplace distribution is empirically
demonstrated to have lower bias as compared to the ML estimate.

For modelling observed data when the competing models are the Gaussian and Laplace distribu-
tions, we have shown how the MML framework can be used in selecting the optimal distribution. We
considered the total message lengths due to the MML estimators corresponding to the two distributions
and determined the optimal model as the one that results in the least total message length. This was
demonstrated when evaluating the suitability of modelling using Laplace and Gaussian distributions
in both simulated and real-world applications.

Furthermore, we analyzed the asymptotic variation of the difference in message lengths due to
the two distributions. This is useful to get insights into selecting an optimal Gaussian or Laplace
depending on the amount of available data. We examined the behaviour of the message lengths in
cases corresponding to when the true data distributions are Gaussian and Laplace. It was observed
that for very large amounts of data, the limiting distributions of the ML-based logarithm of the ratio of
maximized likelihood and the difference in message lengths are the same. In other words, the ML and
MML estimates converge asymptotically. The theoretical results were validated through experimental
evaluation.

As in the case of the Laplace distribution, we showed that the MML estimator of the covariance
matrix of the multivariate Gaussian distribution corresponds to the unbiased estimator. The multi-
variate Gaussian distribution and the accompanying MML framework will be discussed in Chapter 5
when considering mixture models of the Gaussian distributions.



Chapter 4

MML inference of directional
distributions

4.1 Introduction

The previous chapter detailed the MML inference of the Laplace and the multivariate Gaussian dis-
tributions. As noted in Chapter 3, these distributions are commonly used for modelling the data in
the Euclidean space. However, when modelling data with inherent directionality, the Laplace and the
Gaussian distributions are not suitable. Many areas such as earth sciences, meteorology, physics, and
biology have data where the direction of the constituent vectors is important. This chapter focuses
on modelling data using some commonly used directional probability distributions.

The modelling of directional data has been explored using several types of distributions described
on the surfaces of compact manifolds, especially spheres and tori (Fisher, 1953, 1993; Mardia and
Jupp, 2000). The directional distributions considered in this chapter include the von Mises-Fisher
(vMF) defined on any arbitrary d-dimesional unit hypersphere. The vMF distribution is useful for
modelling symmetrically distributed data on the spherical surface. Special cases are considered for data
distributed on three-dimensional (3D) compact surfaces – the FB5 or the 5-parameter Fisher-Bingham
distribution (also referred to as the Kent distribution) to model data distributed on the surface of a
3D unit sphere, and the bivariate von Mises (BVM) distribution to model data distributed on the
surface of a 3D torus.

The vMF, FB5 and the BVM distributions have practical significance. The models of vMF distri-
butions have been previously used in applications such as text clustering (Banerjee et al., 2005; Gopal
and Yang, 2014). The directional data in this case correspond to the normalized representations of text
documents which are points on the unit hypersphere. This has motivated the use of multivariate vMF
distributions in this context. Other applications include modelling protein data where the directional
data correspond to the spatial orientations of the constituent atoms (Dowe et al., 1996a; Banerjee
et al., 2005). The modelling of protein directional data has also been done using the FB5 (Kent and
Hamelryck, 2005; Hamelryck et al., 2006) and the BVM distributions (Mardia et al., 2007).

The traditional methods of parameter inference using these distributions are based on ML estima-
tion. However, unlike the Gaussian and the Laplace distributions, the ML parameter estimators of
these directional distributions do not have closed-form expressions. The probability density functions
have intricate mathematical forms which leads to approximating their parameter estimates. Tradi-
tionally, the modelling of the directional data using these probability distributions is based on such
approximations. Further, the ML estimators of these directional distributions are known to be biased
(Dryden and Mardia, 1998; Dore et al., forthcoming). To address these limitations in this chapter, we
consider parameter estimation using the MML framework.

The chapter is organized as follows: the multivariate vMF distribution is discussed in Section 4.2.
For the vMF distribution, the commonly used approximations of its concentration parameter κ are
reviewed first. This is followed by the derivation of the MML estimate of κ using the Wallace and
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Freeman (1987) approach. Dowe et al. (1996c) have demonstrated the superior performance of the
MML estimator in the case of a vMF defined on the surface of a 3D sphere. Their work is extended
here to derive the MML estimators for a generic d-dimensional vMF distribution.

Section 4.3 details the inference mechanism using the FB5 distribution, which is a natural exten-
sion of the vMF distribution on a 3D sphere, as it is used to model directional data asymmetrically
distributed with respect to a mean direction. We explain an intuitive parameterization of the distri-
bution by a geometrical construction of the axes of the distribution. We then outline the procedure to
compute the traditionally used moment and ML parameter estimators. For the FB5 distribution, we
also discuss the alternative forms of the probability density function to highlight the problems associ-
ated with MAP-based estimation under varying parameterizations. We then describe the procedure
to derive the MML estimators. This also includes the methods for numerical computation of some
essential derivatives of the normalization constant, that appear in the derivation.

Section 4.4 pertains to the BVM distribution and, in particular, to a specific case of the BVM
distribution called the Sine variant. The BVM Sine distribution allows for modelling data that is
correlated and thereby serves as a natural analogue of the asymmetric Gaussian distribution but on
the surface of a 3D torus. We discuss the traditional ML and MAP-based estimators and proceed to
derive the MML estimators. As in the case of the FB5 distribution, we outline the methods to compute
the intricate expressions of normalization constant and its associated derivatives in a numerically stable
form.

In all these distributions, we compare our derived MML estimators with the traditionally used
estimators. The MML estimators are analyzed by empirically evaluating the bias, mean squared
error, the Kullback-Leibler distance and likelihood ratio tests (see Section 2.5). We demonstrate the
superior and robust performance of the MML estimators across all these distributions.

4.2 Multivariate von Mises-Fisher distribution

The von Mises-Fisher (vMF) is the most fundamental directional distribution as it is analogous to a
symmetric Gaussian distribution, wrapped around a unit hypersphere (Watson and Williams, 1956).
It is useful for modelling directional data that is symmetrically distributed with respect to a mean
direction. Previous studies have established the importance of vMF distributions in mixture modelling
and their applications to clustering of protein dihedral angles (Dowe et al., 1996a; Mardia et al., 2007),
large-scale text clustering (Banerjee et al., 2003), and gene expression analyses (Banerjee et al., 2005).

The probability density function of a vMF distribution with parameters Θ = (µ, κ) ≡ (mean
direction, concentration parameter) for a random unit vector x ∈ Rd on a d-dimensional hyperspherical
surface Sd−1 is given by

f(x;µ, κ) = Cd(κ) exp{κµTx} (4.1)

where Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
is the normalization constant and Iv is a modified Bessel function of

the first kind and order v.

A commonly used method of estimation of the parameters of the vMF distribution is the maxi-
mum likelihood approach. However, the complex nature of the mathematical form makes it difficult
to estimate the concentration parameter κ. This has lead to researchers using many different ap-
proximations, as discussed below in Section 4.2.1. Most of these methods perform well when the
amount of data is large. At smaller sample sizes, they result in inaccurate estimates of κ and are,
thus, unreliable. This is demonstrated by the experiments conducted on a range of sample sizes. The
problem is particularly evident when the dimensionality of the data is large. We will rectify this issue
by using MML estimates for κ, which for other distributions is shown to be statistically robust. The
experiments in Section 4.2.3 demonstrate that the MML estimate of κ provides a more reliable answer
and is an improvement on the current state of the art.
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4.2.1 Existing methods of parameter estimation

The estimate of the concentration parameter κ is often approximated as discussed below. Given data
D = {x1, . . . ,xN}, such that for i ∈ {1, N}, xi is a d-dimensional datum and ‖xi‖= 1, the negative
log-likelihood L of the data using a vMF distribution is given by

L(D|µ, κ) = −N logCd(κ)− κµTR (4.2)

where N is the sample size and R =

N∑
i=1

xi (the vector sum) such that ‖R‖ denotes the magnitude

of the resultant vector R. Let µ̂ML and κ̂ML be the maximum likelihood estimators of µ and κ
respectively. Under the condition that µ̂ML is a unit vector, the negative log-likelihood L will be
minimum when

µ̂ML =
R

‖R‖

The maximum likelihood estimator of κ is the solution of the equation
∂L
∂κ

= 0.

∂L
∂κ

= −NC ′d(κ)

Cd(κ)
− µTR

Hence, κ̂ML = A−1
d (R̄) where Ad(κ̂ML) = −C

′
d(κ̂ML)

Cd(κ̂ML)
=
‖R‖
N

= R̄ (4.3)

In the above equation, C ′d(κ) is the derivative of the normalization constant (see Equation 4.1) with
respect to κ. Solving the non-linear equation: F (κ) ≡ Ad(κ) − R̄ = 0 yields the corresponding
maximum likelihood estimate. For a given κ, Ad(κ) can further be simplified in terms of the ratio of
Bessel functions and can be represented as

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
(4.4)

Because of the difficulties in analytically solving Equation 4.3, there have been several approaches
to approximate κ̂ML (Mardia and Jupp, 2000). Each of these methods is an improvement over their re-
spective predecessors. Tanabe et al. (2007) is an improvement over the estimate proposed by Banerjee
et al. (2005). Sra (2012) is an improvement over Tanabe et al. (2007) and Song et al. (2012) fares bet-
ter when compared to Sra (2012). The common theme in all these methods is that they approximate
the maximum likelihood estimate governed by Equation 4.3. The methods are summarized below.

Approximation of Banerjee et al. (2005)

The approximation due to Banerjee et al. (2005) provides an easy to use expression for κ̂ML. The
formula is very appealing as it eliminates the need to evaluate complex Bessel functions. Banerjee et al.
(2005) demonstrated that this approximation yields better results compared to the ones suggested in
Mardia and Jupp (2000). It is an empirical approximation which can be used as a starting point when
estimating the root of Equation 4.3.

κ̃B
ML =

R̄(d− R̄2)

1− R̄2
(4.5)

Approximation of Tanabe et al. (2007)

The approximation of Tanabe et al. (2007) utilizes the properties of Bessel functions to determine the
lower and upper bounds for κ̂ML. The approach uses a fixed point iteration function in conjunction
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with linear interpolation to approximate κ̂ML. The bounds for κ̂ML are given by

κl =
R̄(d− 2)

1− R̄2
≤ κ̂ML ≤ κu =

R̄d

1− R̄2

Tanabe et al. (2007) proposed to use a fixed point iteration function defined as φ2d(κ) = R̄κAd(κ)−1

and used this to approximate κ̂ML as

κ̃T
ML =

κlφ2d(κu)− κuφ2d(κl)

(φ2d(κu)− φ2d(κl))− (κu − κl)
(4.6)

Approximation of Sra (2012)

The heuristic approximation of Sra (2012) involves refining the approximation given by Banerjee
et al. (2005) by performing two iterations of Newton’s method. Sra (2012) demonstrate that this
approximation fares well when compared to the approximation proposed by Tanabe et al. (2007). The
following two iterations result in κ̃N

ML, the approximation proposed by Sra (2012):

κ1 = κ̃B
ML −

F (κ̃B
ML)

F ′(κ̃B
ML)

and κ̃N
ML = κ1 −

F (κ1)

F ′(κ1)
(4.7)

where F ′(κ) = A′d(κ) = 1−Ad(κ)2 − (d− 1)

κ
Ad(κ) (4.8)

Approximation of Song et al. (2012)

This approximation provided by Song et al. (2012) uses Halley’s method, which is the second order
expansion of Taylor’s series of a given function F (κ). The higher order approximation results in a
more accurate estimate as demonstrated by Song et al. (2012). Halley’s method is truncated after
iterating through two steps of the root finding algorithm, similar to the method of Sra (2012). The
following two iterations result in κ̃H

ML, the approximation proposed by Song et al. (2012):

κ1 = κ̃B
ML −

2F (κ̃B
ML)F ′(κ̃B

ML)

2F ′(κ̃B
ML)2 − F (κ̃B

ML)F ′′(κ̃B
ML)

and κ̃H
ML = κ1 −

2F (κ1)F ′(κ1)

2F ′(κ1)2 − F (κ1)F ′′(κ1)
(4.9)

where F ′′(κ) = A′′d(κ) = 2Ad(κ)3 +
3(d− 1)

κ
Ad(κ)2 +

(d2 − d− 2κ2)

κ2
Ad(κ)− (d− 1)

κ
(4.10)

It is to be noted that the ML estimators (of concentration parameter κ) have considerable bias
(Schou, 1978; Best and Fisher, 1981; Cordeiro and Vasconcellos, 1999). To address this, the minimum
message length based estimation procedure is explored next.

4.2.2 MML-based parameter estimation of d-dimensional vMF

The MML method for parameter estimation has been previously explored for the vMF distributions
defined on the 2D and 3D spherical surfaces (Wallace and Dowe, 1994b; Dowe et al., 1996b,c). In this
section, we extend the work of Dowe et al. (1996c) for a d-dimensional vMF in conjunction with the
Wallace and Freeman (1987) approach to derive the MML estimators.

Prior density of the parameters: Regarding a reasonable prior for the parameters Θ = (µ, κ) of a vMF
distribution, in the absence of any supporting evidence, Wallace and Dowe (1994b) and Dowe et al.
(1996c) suggest the use of the following informative prior that is normalizable and locally uniform at
the Cartesian origin in κ.

h(µ, κ) = h(µ)h(κ) ∝ κd−1

(1 + κ2)
d+1
2
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Fisher information of the parameters: Regarding the evaluation of the determinant of the Fisher
information, Dowe et al. (1996c) argue that in the general d-dimensional case, the determinant of the
Fisher information is

|F(µ, κ)|= (NκAd(κ))d−1 ×NA′d(κ)

where Ad(κ) and A′d(κ) are described by Equations 4.4 and 4.8 respectively. The result was intuitively
described based on the asymptotic expressions for the variance of the ML estimators of µ̂ML and κ̂ML

(Mardia, 1975a).

Message length formulation: Substituting the negative log-likelihood expression (Equation 4.2), and
the expressions for the joint prior density of the parameters and the corresponding Fisher information
in Equation 2.8, where the number of free parameters p = d, the total message length expression is
derived as:

I(µ, κ,D) =
(d− 1)

2
log

Ad(κ)

κ
+

1

2
logA′d(κ) +

(d+ 1)

2
log(1 + κ2)−N logCd(κ)− κµTR + constant

To obtain the MML estimates of µ and κ, the above equation needs to be minimized. The MML
estimate for µ is same as the ML estimate.

µ̂MML =
R

‖R‖ (4.11)

The resultant equation in κ that needs to be minimized is then given by:

(4.12)I(κ) =
(d− 1)

2
log

Ad(κ)

κ
+

1

2
logA′d(κ) +

(d+ 1)

2
log(1 + κ2)−N logCd(κ)− κR+ constant

The MML estimate of κ is obtained by differentiating I(κ) with respect to κ and solving the resulting
non-linear equation, as follows:

Let G(κ) ≡ ∂I

∂κ
= −(d− 1)

2κ
+

(d+ 1)κ

1 + κ2
+

(d− 1)

2

A′d(κ)

Ad(κ)
+

1

2

A′′d(κ)

A′d(κ)
+NAd(κ)−R (4.13)

The MML estimate is the root of the non-linear equation G(κ̂MML) = 0. However, no closed form
solution for κ̂MML exists. The first and second order approximations of the Taylor series of G(κ̂MML),
namely the Newton and Halley method are used to approximate the root of G(κ̂MML) = 0. Both these
variants and the effects of the two approximations are discussed in the experimental results below. To
be fair and consistent with Sra (2012) and Song et al. (2012), the initial guess of the root is taken as
κ̃B

ML (Equation 4.5) and the methods are iterated twice to obtain the root, that is, the MML estimate
κ̂MML.

1. Approximation using Newton’s method:

κ1 = κ̃B
ML −

G(κ̃B
ML)

G′(κ̃B
ML)

and κ̃N
MML = κ1 −

G(κ1)

G′(κ1)
(4.14)

2. Approximation using Halley’s method:

κ1 = κ̃B
ML −

2G(κ̃B
ML)G′(κ̃B

ML)

2G′(κ̃B
ML)2 −G(κ̃B

ML)G′′(κ̃B
ML)

and κ̃H
MML = κ1 −

2G(κ1)G′(κ1)

2G′(κ1)2 −G(κ1)G′′(κ1)
(4.15)

The details of evaluating G′(κ) and G′′(κ) are discussed in Appendix A.1.

Equation 4.14 gives the MML estimate κ̃N
MML using Newton’s method, while Equation 4.15 gives the

MML estimate κ̃H
MML using Halley’s method.
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4.2.3 Evaluation of the MML estimates

In this section, the approximation of the MML estimate using Newton’s method κ̃N
MML and using

Halley’s method κ̃H
MML (Equations 4.14 and 4.15), are compared against the traditionally used ap-

proximations (discussed in Section 4.2.1). While the estimation of the vMF mean direction is the
same across all these methods, the estimation of κ differs and, hence, the corresponding results are
presented. Through these experiments, the better performance of the MML estimates as compared to
its competitors is demonstrated.

For different values of dimensionality d and concentration parameter κ, random vMF samples of size
N are generated using the simulation method of Wood (1994). The parameters of a vMF distribution
are estimated using the previously mentioned approximations. Let κ̂ = {κ̃T

ML, κ̃
N
ML, κ̃

H
ML, κ̃

N
MML, κ̃

H
MML}

denote the estimates of κ corresponding to Tanabe’s, truncated Newton (Sra), truncated Halley (Song),
MML-Newton, and MML-Halley’s approximations, respectively.

Errors in κ estimation: The errors in κ estimation are reported by calculating the absolute error
|κ̂− κ| and the squared error (κ̂− κ)2 averaged over 1000 simulations. The relative error |κ̂−κ|κ can be
used to measure the percentage error in κ estimation. The following observations are made based on
the results shown in Table 4.1.

Table 4.1: Errors in κ estimation. The averages are reported over 1000 simulations for each (N, d, κ)
triple. (As before, bold font indicates the best result.)

(N, d, κ)
Mean absolute error Mean squared error

Tanabe Sra Song MML Tanabe Sra Song MML
κ̃T

ML κ̃N
ML κ̃H

ML κ̃N
MML κ̃H

MML κ̃T
ML κ̃N

ML κ̃H
ML κ̃N

MML κ̃H
MML

10,10,10 2.501e+0 2.486e+0 2.486e+0 2.008e+0 2.012e+0 1.009e+1 9.984e+0 9.984e+0 5.811e+0 5.850e+0
10,10,100 1.879e+1 1.877e+1 1.877e+1 1.316e+1 1.316e+1 5.930e+2 5.920e+2 5.920e+2 2.800e+2 2.802e+2
10,10,1000 1.838e+2 1.838e+2 1.838e+2 1.289e+2 1.289e+2 5.688e+4 5.687e+4 5.687e+4 2.721e+4 2.724e+4
10,100,10 2.716e+1 2.716e+1 2.716e+1 2.708e+1 1.728e+1 7.464e+2 7.464e+2 7.464e+2 7.414e+2 4.102e+2
10,100,100 2.014e+1 2.014e+1 2.014e+1 1.274e+1 1.265e+1 4.543e+2 4.543e+2 4.543e+2 2.069e+2 2.049e+2
10,100,1000 1.215e+2 1.215e+2 1.215e+2 3.873e+1 3.870e+1 1.760e+4 1.760e+4 1.760e+4 2.338e+3 2.337e+3
10,1000,10 3.415e+2 3.415e+2 3.415e+2 3.415e+2 1.386e+2 1.167e+5 1.167e+5 1.167e+5 1.167e+5 2.220e+4
10,1000,100 2.702e+2 2.702e+2 2.702e+2 2.702e+2 1.652e+2 7.309e+4 7.309e+4 7.309e+4 7.309e+4 3.101e+4
10,1000,1000 1.991e+2 1.991e+2 1.991e+2 1.232e+2 1.222e+2 4.014e+4 4.014e+4 4.014e+4 1.570e+4 1.547e+4

100,10,10 5.092e-1 5.047e-1 5.047e-1 4.906e-1 4.906e-1 4.097e-1 4.022e-1 4.022e-1 3.717e-1 3.717e-1
100,10,100 3.921e+0 3.915e+0 3.915e+0 3.813e+0 3.813e+0 2.457e+1 2.450e+1 2.450e+1 2.278e+1 2.278e+1
100,10,1000 3.748e+1 3.747e+1 3.747e+1 3.669e+1 3.669e+1 2.320e+3 2.319e+3 2.319e+3 2.174e+3 2.174e+3
100,100,10 4.223e+0 4.223e+0 4.223e+0 3.674e+0 3.414e+0 1.862e+1 1.862e+1 1.862e+1 1.403e+1 1.420e+1
100,100,100 2.187e+0 2.186e+0 2.186e+0 1.683e+0 1.683e+0 7.071e+0 7.067e+0 7.067e+0 4.395e+0 4.395e+0
100,100,1000 1.447e+1 1.447e+1 1.447e+1 1.129e+1 1.129e+1 3.226e+2 3.226e+2 3.226e+2 2.027e+2 2.027e+2
100,1000,10 9.150e+1 9.150e+1 9.150e+1 9.146e+1 8.251e+1 8.377e+3 8.377e+3 8.377e+3 8.370e+3 6.970e+3
100,1000,100 4.299e+1 4.299e+1 4.299e+1 4.882e+1 4.080e+1 1.856e+3 1.856e+3 1.856e+3 2.659e+3 1.738e+3
100,1000,1000 1.833e+1 1.833e+1 1.833e+1 8.821e+0 8.821e+0 3.728e+2 3.728e+2 3.728e+2 1.060e+2 1.060e+2

• For N = 10, d = 10, κ = 10, the average relative error of κ̃T
ML, κ̃

N
ML, κ̃

H
ML is ∼ 25%, while for

κ̃N
MML and κ̃H

MML, it is ∼ 20%. When N is increased to 100, the average relative error of κ̃T
ML

is 5.09%, of κ̃N
ML and κ̃H

ML is 5.05%, and of κ̃N
MML and κ̃H

MML is 4.9%. We note that increasing
N while holding d and κ reduces the error rate across all estimation methods and for all tested
combinations of d, κ. This is expected because as more data becomes available, the accuracy of
the inference increases. The plots shown in Figure 4.1 reflect this behaviour: while the mean
error at lower values of N = 5, 10, 20, 30 is noticeable, as N is increased to 1000, there is a drastic
drop in the error.

• For a fixed N and d, increasing κ increases the mean absolute error but decreases the average
relative error. As an example, for N = 100, d = 100, κ = 10, the average relative error of
κ̃T

ML, κ̃
N
ML, and κ̃H

ML is ∼ 42%, while for κ̃N
MML and κ̃H

MML is 36.7% and 34%, respectively. When
κ is increased to 100, the error rate for κ̃T

ML, κ̃
N
ML, and κ̃H

ML drops to 2.18% and for κ̃N
MML and

κ̃H
MML, it drops to 1.68%. Further increasing κ by an order of magnitude to 1000 results in
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average relative errors of 1.4% for κ̃T
ML, κ̃

N
ML, and κ̃H

ML, while it is 1.1% for κ̃N
MML and κ̃H

MML.
This indicates that as the data becomes more concentrated, the errors in parameter estimation
decrease.

• There does not appear to be a clear pattern of the variation in error rates when d is changed
keeping N and κ fixed. However, in any case, MML-based approximations have the least mean
absolute and MSE.
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Figure 4.1: Box-whisker plots illustrating the κ estimates as the sample size is gradually increased.
True distribution is a 10-dimensional vMF with κ = 10. The plots are also indicative of the bias due
to the estimates.
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KL distance and message lengths of the estimates: The quality of parameter inference is further
determined by computing the KL distance and the message lengths associated with the parameter
estimates. The analytical expression to calculate the KL distance of any two vMF distributions is
derived in Appendix A.2. The KL distance is computed between the estimated parameters and the
true vMF parameters. The minimum message length expression for encoding data using a vMF
distribution is previously derived in Equation 4.12. The average values of both these metrics are listed
in Table 4.2. It is observed that the MML estimates of κ result in the least value of KL distance across
all combinations of N, d, κ. Also, the message lengths associated with the MML based estimates are
the least. From Table 4.2, note that when N = 10, κ̃N

MML and κ̃H
MML have lower message lengths. For

N = 10, d = 10, and κ = 10, κ̃N
MML and κ̃H

MML result in extra compression of ∼ 1.5 bits over κ̃T
ML, κ̃

N
ML,

and κ̃H
ML, which makes the MML estimates 21.5 times more likely than the others (as per Equation 2.5)

to model the same empirical data.

Table 4.2: Comparison of the κ estimates using KL distance and message length formulation (both
metrics are measured in bits).

(N, d, κ)
Average KL distance Average message length

Tanabe Sra Song MML Tanabe Sra Song MML
κ̃T

ML κ̃N
ML κ̃H

ML κ̃N
MML κ̃H

MML κ̃T
ML κ̃N

ML κ̃H
ML κ̃N

MML κ̃H
MML

10,10,10 8.777e-1 8.750e-1 8.750e-1 6.428e-1 6.445e-1 9.285e+2 9.285e+2 9.285e+2 9.269e+2 9.269e+2
10,10,100 8.803e-1 8.798e-1 8.798e-1 7.196e-1 7.199e-1 8.214e+2 8.214e+2 8.214e+2 8.208e+2 8.208e+2
10,10,1000 9.006e-1 9.005e-1 9.005e-1 7.443e-1 7.446e-1 6.925e+2 6.925e+2 6.925e+2 6.919e+2 6.919e+2
10,100,10 8.517e+0 8.517e+0 8.517e+0 8.479e+0 5.321e+0 8.633e+3 8.633e+3 8.633e+3 8.633e+3 8.585e+3
10,100,100 8.444e+0 8.444e+0 8.444e+0 6.007e+0 6.009e+0 8.428e+3 8.428e+3 8.428e+3 8.414e+3 8.414e+3
10,100,1000 8.472e+0 8.472e+0 8.472e+0 7.118e+0 7.120e+0 7.274e+3 7.274e+3 7.274e+3 7.269e+3 7.269e+3
10,1000,10 8.433e+1 8.433e+1 8.433e+1 8.433e+1 1.777e+1 7.030e+4 7.030e+4 7.030e+4 7.030e+4 6.925e+4
10,1000,100 8.430e+1 8.430e+1 8.430e+1 8.430e+1 4.697e+1 7.030e+4 7.030e+4 7.030e+4 7.030e+4 6.989e+4
10,1000,1000 8.451e+1 8.451e+1 8.451e+1 5.976e+1 5.977e+1 6.825e+4 6.825e+4 6.825e+4 6.811e+4 6.811e+4

100,10,10 7.409e-2 7.385e-2 7.385e-2 7.173e-2 7.173e-2 9.115e+3 9.115e+3 9.115e+3 9.115e+3 9.115e+3
100,10,100 7.539e-2 7.535e-2 7.535e-2 7.411e-2 7.411e-2 7.858e+3 7.858e+3 7.858e+3 7.858e+3 7.858e+3
100 10,1000 7.271e-2 7.271e-2 7.271e-2 7.161e-2 7.161e-2 6.403e+3 6.403e+3 6.403e+3 6.403e+3 6.403e+3
100,100,10 7.270e-1 7.270e-1 7.270e-1 6.146e-1 6.208e-1 8.615e+4 8.615e+4 8.615e+4 8.614e+4 8.614e+4
100,100,100 7.357e-1 7.357e-1 7.357e-1 7.117e-1 7.117e-1 8.299e+4 8.299e+4 8.299e+4 8.299e+4 8.299e+4
100,100,1000 7.330e-1 7.330e-1 7.330e-1 7.210e-1 7.210e-1 6.976e+4 6.976e+4 6.976e+4 6.976e+4 6.976e+4
100,1000,10 7.324e+0 7.324e+0 7.324e+0 7.318e+0 6.201e+0 7.024e+5 7.024e+5 7.024e+5 7.024e+5 7.023e+5
100,1000,100 7.302e+0 7.302e+0 7.302e+0 7.045e+0 7.106e+0 7.022e+5 7.022e+5 7.022e+5 7.019e+5 7.022e+5
100,1000,1000 7.340e+0 7.340e+0 7.340e+0 7.097e+0 7.097e+0 6.707e+5 6.707e+5 6.707e+5 6.707e+5 6.707e+5

Bias of the parameter estimates: The maximum likelihood estimate of κ is known to have significant
bias (Schou, 1978; Best and Fisher, 1981; Cordeiro and Vasconcellos, 1999). The goal here is to
demonstrate that MML-based parameter approximations result in estimates with reduced bias. The
MSE in Table 4.1 can be decomposed into the sum of bias and variance terms shown in Equation 2.14
(Taboga, 2012). Table 4.3 shows the bias-variance decomposition of the errors when estimating the
concentration parameter in the above simulations. The bias of κ̃N

MML and κ̃H
MML is lower compared

to the other estimates. The variance of the MML estimates, however, is not always the smallest, as
observed in Table 4.3. The combination of bias and variance, which is the mean squared error (MSE),
is empirically demonstrated to be the least for the MML estimates.

Statistical hypothesis testing: There have been several goodness-of-fit methods proposed in the liter-
ature to test the null hypothesis of a vMF distribution against some alternative hypothesis (Kent,
1982; Mardia et al., 1984; Mardia and Jupp, 2000). Recently, Figueiredo (2012) suggested tests for
the specific case of concentrated vMF distributions. Here, the behaviour of κ estimates for generic
vMF distributions as proposed by Mardia et al. (1984) is examined. They derived a likelihood ratio
test for the null hypothesis of a vMF distribution (H0) against the alternative of a Fisher-Bingham
distribution (Ha). The asymptotically equivalent Rao’s score statistic (Rao, 1973) was used to test
the hypothesis.

The score statistic W, in this case, is a function of the concentration parameter. It has an asymp-
totic χ2(p) distribution (with degrees of freedom p = 1

2d(d + 1) − 1) under H0 as the sample size
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Table 4.3: Bias-variance decomposition of the squared error (κ̂− κ)2.

(N, d, κ)
Bias squared Variance

Tanabe Sra Song MML Tanabe Sra Song MML
κ̃T

ML κ̃N
ML κ̃H

ML κ̃N
MML κ̃H

MML κ̃T
ML κ̃N

ML κ̃H
ML κ̃N

MML κ̃H
MML

10,10,10 5.609e+0 5.520e+0 5.520e+0 1.299e+0 1.269e+0 4.476e+0 4.464e+0 4.464e+0 4.512e+0 4.581e+0
10,10,100 2.298e+2 2.288e+2 2.288e+2 4.986e-3 2.577e-4 3.632e+2 3.632e+2 3.632e+2 2.800e+2 2.802e+2
10,10,1000 2.157e+4 2.156e+4 2.156e+4 2.764e+1 3.193e+1 3.531e+4 3.531e+4 3.531e+4 2.718e+4 2.720e+4
10,100,10 7.378e+2 7.378e+2 7.378e+2 7.333e+2 2.875e+2 8.660e+0 8.660e+0 8.660e+0 8.066e+0 1.226e+2
10,100,100 4.054e+2 4.053e+2 4.053e+2 1.546e+2 1.522e+2 4.894e+1 4.894e+1 4.894e+1 5.231e+1 5.273e+1
10,100,1000 1.473e+4 1.473e+4 1.473e+4 2.207e+1 1.994e+1 2.870e+3 2.870e+3 2.870e+3 2.316e+3 2.317e+3
10,1000,10 1.166e+5 1.166e+5 1.166e+5 1.166e+5 1.921e+4 8.090e+1 8.090e+1 8.090e+1 8.090e+1 2.983e+3
10,1000,100 7.301e+4 7.301e+4 7.301e+4 7.300e+4 2.728e+4 8.685e+1 8.685e+1 8.685e+1 8.635e+1 3.735e+3
10,1000,1000 3.964e+4 3.964e+4 3.964e+4 1.517e+4 1.493e+4 4.969e+2 4.969e+2 4.969e+2 5.306e+2 5.342e+2

100,10,10 4.129e-2 3.528e-2 3.528e-2 8.132e-3 8.129e-3 3.684e-1 3.669e-1 3.669e-1 3.636e-1 3.636e-1
100,10,100 1.280e+0 1.206e+0 1.206e+0 5.505e-2 5.504e-2 2.329e+1 2.329e+1 2.329e+1 2.273e+1 2.273e+1
100,10,1000 9.796e+1 9.728e+1 9.728e+1 6.620e+0 6.619e+0 2.222e+3 2.222e+3 2.222e+3 2.168e+3 2.168e+3
100,100,10 1.783e+1 1.783e+1 1.783e+1 4.661e+0 6.202e+0 7.807e-1 7.807e-1 7.807e-1 9.369e+0 8.003e+0
100,100,100 3.371e+0 3.367e+0 3.367e+0 7.147e-1 7.146e-1 3.700e+0 3.700e+0 3.700e+0 3.681e+0 3.681e+0
100,100,1000 1.161e+2 1.161e+2 1.161e+2 3.504e-1 3.504e-1 2.065e+2 2.065e+2 2.065e+2 2.023e+2 2.023e+2
100,1000,10 8.372e+3 8.372e+3 8.372e+3 8.364e+3 6.809e+3 5.385e+0 5.385e+0 5.385e+0 5.200e+0 1.614e+2
100,1000,100 1.848e+3 1.848e+3 1.848e+3 5.143e+2 1.628e+3 7.656e+0 7.656e+0 7.656e+0 2.145e+3 1.099e+2
100,1000,1000 3.359e+2 3.359e+2 3.359e+2 6.926e+1 6.925e+1 3.692e+1 3.692e+1 3.692e+1 3.674e+1 3.674e+1

Table 4.4: Goodness-of-fit tests for the null hypothesis H0 : vMF distribution and the alternate
hypothesis Ha : Fisher-Bingham distribution. Critical values of the test statistic correspond to a
significance of 5%.

(d, κ)
Critical Test statistic p-value of the test
value Tanabe Sra Song MML Tanabe Sra Song MML
χ2(p) κ̃T

ML κ̃N
ML κ̃H

ML κ̃N
MML κ̃H

MML κ̃T
ML κ̃N

ML κ̃H
ML κ̃N

MML κ̃H
MML

10,10 7.215e+1 1.850e+2 5.353e+1 5.353e+1 5.353e+1 5.353e+1 0.000e+0 5.258e-1 5.258e-1 5.260e-1 5.260e-1
10,100 7.215e+1 1.698e+3 4.949e+1 4.949e+1 4.945e+1 4.945e+1 0.000e+0 6.247e-1 6.247e-1 6.267e-1 6.267e-1
10,1000 7.215e+1 1.950e+3 4.811e+1 4.811e+1 5.060e+1 5.060e+1 0.000e+0 6.571e-1 6.571e-1 5.724e-1 5.724e-1
100,10 5.215e+3 5.090e+3 5.090e+3 5.090e+3 5.090e+3 5.090e+3 3.739e-1 3.739e-1 3.739e-1 3.741e-1 3.741e-1
100,100 5.215e+3 5.010e+3 5.010e+3 5.010e+3 5.010e+3 5.010e+3 6.103e-1 6.127e-1 6.127e-1 6.125e-1 6.125e-1
100,1000 5.215e+3 5.025e+3 5.018e+3 5.018e+3 5.022e+3 5.022e+3 5.427e-1 5.597e-1 5.597e-1 5.517e-1 5.517e-1
1000,10 5.021e+5 5.006e+5 5.006e+5 5.006e+5 5.006e+5 5.006e+5 4.682e-1 4.682e-1 4.682e-1 4.687e-1 4.687e-1
1000,100 5.021e+5 5.005e+5 5.005e+5 5.005e+5 5.005e+5 5.005e+5 5.050e-1 5.050e-1 5.050e-1 5.057e-1 5.057e-1
1000,1000 5.021e+5 5.007e+5 5.007e+5 5.007e+5 5.007e+5 5.007e+5 4.283e-1 4.283e-1 4.283e-1 4.196e-1 4.196e-1

N →∞. For d = {10, 100, 1000}, the critical values at 5% significance level are given in Table 4.4. If
the computed test statistic exceeds the critical value, then the null hypothesis of a vMF distribution
is rejected. A simulation study is conducted where samples of size N = 1 million are generated from
a vMF distribution with known mean and κ = {10, 100, 1000}. For each inferred estimate κ̂, the test
statistic is compared with the corresponding critical value.

For d = 10, the approximation κ̃T
ML has a significant effect as its test statistic exceeds the critical

value, and consequently the p-value is close to zero. This implies that the null hypothesis of a vMF
distribution is rejected by using the estimate κ̃T

ML. However, this is incorrect as the data was gen-
erated from a vMF distribution. The p-values due to the estimates κ̃N

ML, κ̃
H
ML, κ̃

N
MML, and κ̃H

MML are
all greater than 0.05 (the significance level) which implies that the null hypothesis is accepted. For
d = {100, 1000}, the p-values corresponding to the different estimates are greater than 0.05. In these
cases, the use of all the estimates lead to the same conclusion, that is, accepting the null hypothesis
of a vMF distribution. As the amount of data increases, the error due to all the estimates decreases.
This is further exemplified below.

Asymptotic behaviour of the MML estimates: Based on the empirical tests, we have so far seen that
MML estimates fare better when compared to the other approximations. The limiting case behaviour
of the MML estimates is now discussed. For large sample sizes (N → ∞), we plot the errors in κ
estimation. Song et al. (2012) demonstrated that their approximation κ̃H

ML results in the lowest error
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in the limiting case, as compared to Sra (2012). The variation in error is computed in two scenarios
with fixed d = 1000 and

1. increasing κ: Figure 4.2(a) illustrates the behaviour of the absolute error with increasing κ. The
first observation is that irrespective of the estimation procedure, the error continues to increase
with increasing κ values (which corroborates our observations in the empirical tests) and then
saturates. According to Song et al. (2012), their estimate κ̃H

ML produces the lowest error which
we can see in the figure. Further, our MML-Newton approximation κ̃N

MML actually performs
worse than Song’s approximation κ̃H

ML. However, we note that the errors due to MML Halley’s
approximation κ̃H

MML are identical to those produced by κ̃H
ML. This suggests that asymptotically,

the approximations achieved by κ̃H
ML and κ̃H

MML are more accurate (note that the errors in the
limiting case are extremely low).

2. increasing R̄: The maximum likelihood estimate of κ aims to achieve F (κ̂) ≡ Ad(κ̂) − R̄ = 0
(Equation 4.3). Hence, log|Ad(κ)− R̄| gives a measure of the error corresponding to an estimate
of κ. Figure 4.2(b) depicts the variation of this error with increasing R̄ . It is observed that κ̃H

ML

and κ̃H
MML produce the least error. Also note that the error produced due to κ̃N

MML is greater than
that produced by κ̃H

MML. However, we highlight the fact that MML-based parameter inference
aims to achieve G(κ̂) ≡ 0 (Equation 4.13), a fundamentally different objective function compared
to the maximum likelihood based one.

The asymptotic results are shown here by assuming a value of N = 10200 (note the corresponding
extremely low error rates). In the limiting case, the MML estimate κ̃H

MML coincides with the ML
estimate κ̃H

ML. However, the performance of Halley’s approximation κ̃H
ML is better compared to the

MML-Newton’s approximation κ̃N
MML. The same behaviour is observed for when κ is fixed and the

dimensionality is increased. For enormous amounts of data, the ML approximations converge to the
MML ones.
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Figure 4.2: Errors in κ estimation for d = 1000 as the sample size N →∞.

For higher dimensional vMF distributions, the above empirical analyses demonstrate that the
approximations of the MML estimate of κ perform better in terms of the neutral evaluation metrics
such as bias, MSE, and KL distance. The analyses was done under many combinations of sample
sizes, dimensionality, and the true distribution parameters. In all the cases, as observed above, the
MML estimates outperform the ML estimates.
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4.3 Kent distribution on a 3D sphere

The vMF distribution discussed in the previous section is useful for modelling directional data that
is symmetrically distributed with respect to a mean direction. The modelling of asymmetrically
distributed directional data, however, requires distributions which generalize the vMF distribution. In
this section, we focus on the specific case where the data is distributed on the surface of a sphere in the
three-dimensional space. A generalization of the vMF in 3D, called the Fisher-Bingham distribution
(Mardia, 1975b). has the form

f(x; Θ) ∝ exp{κγγγT1 x + β2(γγγT2 x)2 + β3(γγγT3 x)2} (4.16)

where the parameters γγγ1, γγγ2, γγγ3 are unit vectors with γγγ2 and γγγ3 being orthogonal to each other, the
parameters β2 and β3 are real values with β2 ≥ β3. As the distribution is characterized using an 8
real valued parameter vector Θ (two for γγγ1, three for γγγ2 and γγγ3, and three scalars κ, β2, β3), it is also
referred to as the FB8 distribution. Notice that compared to the vMF, the FB8 distribution has an
exponential factor with additional quadratic terms.

The FB8 distribution is a better choice compared to the vMF distribution when modelling real
world 3D asymmetrical directional data, because the distribution has more free parameters. How-
ever, the use of the FB8 distribution in directional statistics poses difficulties owing to its complex
mathematical form and the lack of a natural understanding of its parameters (Kent, 1982). In order
to achieve a balance between the highly simplified vMF model and the complex FB8 distribution,
Kent (1982) suggested an alternative form that is relatively easy to work with and whose parameters
have natural interpretations. This distribution, referred to as the Kent distribution, is obtained from
Equation 4.16 by assuming γγγ1, γγγ2, and γγγ3 form an orthogonal system of vectors and are subject to the
constraint β2 = −β3 = β. The probability density function is then given by

f(x; Θ) = c(κ, β)−1 exp{κγγγT1 x + β[(γγγT2 x)2 − (γγγT3 x)2]} (4.17)

where γγγ1, γγγ2, and γγγ3 form an orthogonal system and represent the mean, major, and minor axes,
respectively; κ, as before, measures the concentration, and 0 ≤ β < κ/2 describes the ovalness.

The Kent distribution is a spherical analogue of the general Gaussian distribution and serves as
a natural extension to the vMF distribution. The distribution has ellipse-like contours of constant
probability density on the spherical surface. Kent (1982) argued that by imposing the constraint
β < κ/2 and requiring γγγ1, γγγ2, and γγγ3 to be an orthogonal system, the distribution would be unimodal
and have a behaviour similar to the Gaussian distribution but on a spherical surface.

As the Kent distribution is characterized using a five real valued parameter vector Θ (three for
γγγ1, γγγ2, and γγγ3 because they are orthogonal and unit vectors, and two for the scalar entities κ, β),
it is popularly referred to as the FB5 distribution. The 5-parameter Fisher-Bingham distribution is
denoted as FB5(Q, κ, β), where Q = (γγγ1, γγγ2, γγγ3) is a 3 × 3 orthogonal matrix. The normalization
constant c(κ, β) of the distribution is derived as an infinite series

c(κ, β) = 2π
∞∑
j=0

Γ(j + 1
2)

Γ(j + 1)
β2j

(
2

κ

)2j+ 1
2

I2j+ 1
2
(κ) (4.18)

that depends on the Gamma function Γ and the modified Bessel function Iv of the first kind and order
v (Abramowitz and Stegun, 1965; Kent, 1982).

The analysis of data using FB5 distributions requires estimating the corresponding parameters.
Due to the complex mathematical form of the density function, these estimates are approximated.
Kent (1982) derived the moment estimates and suggested limiting case approximations. However,
the use of such simplified approximations can have considerable effects from a practical standpoint.
To overcome this, Bayesian estimation using the MML principle has been explored, as it has before
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resulted in reliable estimators. In the case of the FB5 distribution, this is demonstrated by the
experiments in Section 4.3.6.

4.3.1 An intuitive parameterization of the distribution

The FB5 distribution defined by Equation 4.17 comprises of three directional parameters and two scalar
parameters. An intuitive way to parameterize the distribution that is relatively easy to comprehend
is presented here. Let X1 = (1 0 0)T ,X2 = (0 1 0)T ,X3 = (0 0 1)T be the unit vectors along
the standard coordinate axes. Let R be the rotation matrix that transforms the orientation axes
(γγγ1, γγγ2, γγγ3) supporting an FB5 distribution to align with the standard coordinate axes. Then, RT =
(γγγ1, γγγ2, γγγ3) = Q based on the following reasoning. Let α ∈ [0, π] and η ∈ [0, 2π] be the co-latitude
and longitude that determine the mean axis γγγ1 (shown in Figure 4.3a). A clockwise rotation by an
angle η about X1 brings γγγ1 into the X1X2 plane. This operation transforms the axes to γγγ′1, γγγ

′
2, γγγ
′
3

respectively (Figure 4.3b). A subsequent clockwise rotation by an angle α about X3 aligns γγγ′1 with
X1. This rotation brings the major and minor axes into the X2X3 plane (as orthogonality should be
preserved). In this orientation (Figure 4.3c), let ψ ∈ [0, π] be the angle between the transformed axis
γγγ′′2 and X2. A clockwise rotation by ψ about X1 aligns γγγ′′2 with X2 and γγγ′′3 with X3.

X1

X2

X3

η

γ1

γ3

γ2

(a) Rη

X1

X2

X3

α

γ
′

1

γ
′

2

γ
′

3

(b) Rα

X1 = γ ′′
1

X2

X3

ψ

γ ′′
2

γ ′′
3

(c) Rψ

Figure 4.3: The series of rotations to orient γγγ1, γγγ2, γγγ3 with the standard coordinate axes. The red
dashed lines indicate the axis that is not in the first octant. For example, in (b), γγγ′2 is below the X2X3

plane whereas γγγ′3 is above the X2X3 plane but behind the X1X3 plane.

If Rη,Rα, and Rψ denote the respective rotation matrices given by

Rη =


1 0 0

0 cos η sin η

0 − sin η cos η

 , Rα =


cosα sinα 0

− sinα cosα 0

0 0 1

 , Rψ =


1 0 0

0 cosψ sinψ

0 − sinψ cosψ


then the complete rotation matrix that effects the transformation from (γγγ1, γγγ2, γγγ3) to (X1,X2,X3) is
given by their product R = RψRαRη. By construction, any Xi = Rγγγi, (i = 1, 2, 3) and, consequently,
Q = RT. Hence, the three orthogonal axes γγγi of an FB5 distribution can effectively be described using
the three angular parameters ψ, α, and η as follows

γγγ1 = (cosα, sinα cos η, sinα sin η)T

γγγ2 = (− cosψ sinα, cosψ cosα cos η − sinψ sin η, cosψ cosα sin η + sinψ cos η)T

γγγ3 = (sinψ sinα, − sinψ cosα cos η − cosψ sin η, − sinψ cosα sin η + cosψ cos η)T (4.19)

The parameters κ and β are interpreted as scalars controlling the concentration and ovalness of
the distribution. Also, since the distribution has ellipse-shaped contours on the spherical surface, it is
easier to visualize the distribution and relate κ and β terms using eccentricity. Kent (1982) defined the
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eccentricity1 as 2β/κ, which is constrained to be less than 1 (by definition), allowing correspondence
between a specific Kent distribution and its elliptical nature. In order to better understand the
interaction of κ and the eccentricity terms, we provide examples in Figure 4.4.

(a) eccentricity = 0.1 (b) eccentricity = 0.5 (c) eccentricity = 0.9

Figure 4.4: An example of an FB5 distribution with varying eccentricities for κ = 10.

For a given κ = 10, an eccentricity of 0.1 results in (almost) spherical contours (Figure 4.4a) (remi-
niscent of a vMF distribution); an eccentricity of 0.5 results in contours which are moderately eccentric
(Figure 4.4b); an eccentricity of 0.9 further disperses the data along the major axis (Figure 4.4c).

4.3.2 Existing methods of parameter estimation

The traditional methods of maximum likelihood (ML) estimation or maximum a priori (MAP) based
estimation require the optimization of negative log-likelihood or the posterior density functions re-
spectively. They, however, do not result in closed form solutions and present difficulties because of
the complex form of the probability distribution. Hence, the widely used method of estimating the
parameters of an FB5 distribution is done using moment estimation. Kent (1982) formulated a pro-
cedure to obtain these estimates that may be subsequently used as starting points to obtain the ML
or MAP estimates. Kent (1982) derived the moment estimates and suggested approximations based
on these estimates.

Moment estimation

The moment estimates were proposed as an alternative to the maximum likelihood estimates. The
approach adopted by Kent (1982) is described here: let data D = {x1, . . . ,xN} be a random sample
from FB5(Q, κ, β). The sample mean x̄ and sample dispersion 3 × 3 matrix S of the data are then
given as

x̄ =
1

N

N∑
i=1

xi and S =
1

N

N∑
i=1

xix
T
i

Let κ̃, β̃, and Q̃, where Q̃ = (γ̃γγ1, γ̃γγ2, γ̃γγ3) be the respective moment estimates of κ, β, and Q. Then
the moment estimate γ̃γγ1 of the unit mean vector is obtained by normalizing x̄, while the moment
estimates γ̃γγ2 and γ̃γγ3 are obtained by diagonalizing S. The matrix Q̃ is obtained using the following
two steps

1. Choose an orthogonal matrix H to rotate x̄ to align with the X1 = (1 0 0)T axis (based on the
discussion in Section 4.3.1, H = RαRη, where α and η are the co-latitude and longitude of x̄

1The definition of eccentricity in this context differs from the traditional definition of eccentricity for a conic section
such as a parabola, an ellipse, or a hyperbola defined in the Euclidean plane.



4.3. KENT DISTRIBUTION ON A 3D SPHERE 51

respectively). Let B = HTSH, so that B is the dispersion matrix in the transformed frame of
reference.

2. The moment estimates of the major and minor axis correspond to the respective directions of
maximum and minimum variance of the data in this transformed reference frame. If the angle
between the direction of maximum variance and the X2 = (0 1 0)T axis is ψ, then a rotation
defined by the orthogonal matrix K about X1 by ψ, aligns the maximum and minimum variance
directions with the X2 and X3 = (0 0 1)T axes respectively. To compute these directions, it is
required to diagonalize BL, the lower 2×2 submatrix of B. The eigenvalue decomposition of BL

gives the angle ψ between the maximum variance direction and X2, which can be subsequently
used to determine K. If the 3× 3 dispersion matrix B = [bij ], 1 ≤ i, j ≤ 3, the expression for ψ
is

tan 2ψ =
2b23

b22 − b33
where BL =

[
b22 b23

b23 b33

]
(4.20)

The two rotations defined by the orthogonal transformations H followed by K transform the axes
of an FB5 distribution to align with the standard coordinate axes. In effect, the original data D
is transformed to D′ = {y1, . . . ,yN} such that D′ corresponds to a random sample drawn from
FB5(I, κ, β), where I is the identity matrix. Hence, an inverse transformation of the coordinate axes
yields the moment estimates Q̃ of the axes of the FB5 distribution. Further, for y = (y1, y2, y3)T ,
Kent (1982) provided the first and second order moment expressions as follows

E[y1] = cκ/c, E[y2
2 − y2

3] = cβ/c, where c = c(κ, β), cκ = ∂c/∂κ, cβ = ∂c/∂β (4.21)

For data D, if ‖x̄‖ is the magnitude of the sample mean x̄ and l1 > l2 are the eigenvalues of BL, then
Kent (1982) defines the shape and size and quantities as r1 and r2 respectively and are given as

r1 = E[y1] = ‖x̄‖ and r2 = E[y2
2 − y2

3] = l1 − l2 (4.22)

Solving these two equations in conjunction with Equation 4.21 results in the moment estimates κ̃ and
β̃. As the expressions of the partial derivatives cκ and cβ are difficult to work with, the following

limiting case approximations of κ̃ and β̃ are often used (Kent, 1982).

κ̃ ≈ (2− 2r1 − r2)−1 + (2− 2r1 + r2)−1

β̃ ≈ 1

2
{(2− 2r1 − r2)−1 − (2− 2r1 + r2)−1} (4.23)

These asymptotic approximations can also be used as starting points to accurately determine κ̃ and
β̃ using an optimization library.

Maximum likelihood estimation

To obtain the maximum likelihood estimates, the negative log-likelihood function L(D|Θ) of the data
D needs to be minimized. It is to be noted that γγγ1, γγγ2, and γγγ3 are expressed in terms of ψ, α, and η
(Equation 4.19), so that Θ = {ψ, α, η, κ, β} is a vector of parameters.

L(D|Θ) = N log c(κ, β)− κγγγT1
N∑
i=1

xi − β γγγT2

(
N∑
i=1

xix
T
i

)
γγγ2 + β γγγT3

(
N∑
i=1

xix
T
i

)
γγγ3 (4.24)

The maximum likelihood estimates are given as solutions to the equation
∂L
∂Θ

= 0. These estimates

are obtained through numerical optimization as the solution cannot be written in an analytical form.
The optimization routine often requires some initial values of the roots. These starting points are
taken to be the moment estimates discussed previously.
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4.3.3 Maximum a posteriori probability (MAP) estimation

The moment estimates of an FB5 distribution are typically used in a variety of applications (Peel et al.,
2001; Kent and Hamelryck, 2005; Boomsma et al., 2006; Hamelryck et al., 2006). In this section, we
explore the MAP-based parameter estimation of the FB5 distribution and use it when comparing the
various estimators (see Section 4.3.6). The estimation procedure requires the maximization of the
posterior density given some observed data D.

As discussed in Section 2.2.2, if Pr(Θ) is an appropriate prior density of the parameters and
Pr(D|Θ) is the likelihood of data, then the posterior density Pr(Θ|D) is given as

Pr(Θ|D) ∝ Pr(Θ)× Pr(D|Θ)

The MAP estimator corresponds to the mode of the posterior distribution. The mode is, however,
not invariant under some non-linear transformation of the parameter space (Murphy, 2012). This
drawback is demonstrated in the context of estimating the parameters of a FB5 distribution in the
following discussion. A prior Pr(Θ) is described on the parameter vector Θ and it is formulated based
on the choice of priors for the individual elements of the parameter vector.

Prior density of the parameters

The formulation of the prior density of the 5-parameter vector Θ is derived as a product of the priors
of the three angular parameters ψ, α, and η and two scalar parameters κ and β. Hence, the prior
density of the complete set of parameters is given by Pr(Θ) = Pr(ψ, α, η, κ, β) = Pr(ψ, α, η)×Pr(κ, β).

Prior density on the angular parameters ψ, α, η: By construction (see Section 4.3.1), the pair α, η
uniquely defines the mean direction γγγ1 of an FB5 distribution. The mean may be considered to be

uniformly distributed on the spherical surface and, hence, its prior density is
sinα

4π
. The angle ψ which

determines the orientation of the major and minor axis in a plane perpendicular to γγγ1 is treated to
be uniformly distributed in the range [0, π]. The joint prior of the angular parameters is, therefore,

given by Pr(ψ, α, η) =
sinα

4π2
.

Prior density on the scale parameters κ, β: The prior of the concentration parameter κ corresponds
to the one used by Dowe et al. (1996c) in their analysis of vMF distributions defined on the 3D sphere

and is given as Pr(κ) =
4κ2

π(1 + κ2)2
. For a given κ, as per the definition of an FB5 distribution, the

parameter β will be in the range [0, κ/2). A uniform prior is considered for β within this range, that
is, the conditional density Pr(β|κ) = 2/κ. Therefore, the joint prior density of the scalar parameters
is Pr(κ, β) = (2/κ) Pr(κ). The joint prior density Pr(Θ) is, hence, given as:

Pr(ψ, α, η, κ, β) =
2κ sinα

π3(1 + κ2)2
(4.25)

Non-linear transformations of the parameter space

With the help of an example, it is demonstrated here that the invariance property is not a charac-
teristic of MAP-based estimation, thus making it a statistically less robust estimator. As discussed
in Section 2.2.2, if T (Θ) = Θ′ denotes a transformation T on the parameter vector Θ then, for
invariance, the parameter estimates in both the parameterizations should be affected by the same
transformation. The parameter estimate Θ̂′ in the transformed space and the estimate Θ̂ should be
related as T (Θ̂) = Θ̂′.

An alternative parameterization involving β: Another parameterization is considered where the ec-
centricity e = 2β/κ (see Section 4.3.1) is used instead of β. This is an example of a non-linear
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transformation of the parameter β. The prior density Pr(Θ′) of the modified parameter vector
Θ′ = (ψ, α, η, κ, e) is obtained by dividing the prior density Pr(Θ) by the Jacobian of the trans-
formation given by J = ∂e/∂β = 2/κ. The prior density Pr(Θ′) (after reparameterization) is

Pr(Θ′) = Pr(ψ, α, η, κ, e) =
Pr(ψ, α, η, κ, β)

J
=

κ2 sinα

π3(1 + κ2)2
(4.26)

Based on the definitions of prior densities in varying parameter spaces, one can estimate the
parameters by maximizing the posterior density in the corresponding parameterization. The different
expressions for the posterior density are given in Equation 2.3. The expression for f(x,Θ′) is obtained
by substituting β = κ e/2 in the FB5 probability density function f(x,Θ) given by Equation 4.17. It
should be noted that the value of likelihood expression is the same across different parameterizations.

An example demonstrating the effects of alternative parameterizations

An example of estimating parameters using the various posterior distributions for a given dataset is
shown here. A random sample of size N = 10 is generated from an FB5 distribution (Kent et al., 2013).
The true parameters of the distribution are {ψ, α, η} = π/2 each, κ = 10, and β = 2.5 (eccentricity
= 0.5). To obtain the MAP estimates, the objective functions corresponding to the posterior density
(Equation 2.3) need to be maximized. To solve for the parameter estimates, the non-linear optimization
library NLopt2 (Johnson, 2014) in conjunction with derivative-free optimization (Powell, 1994) is used.
Maximizing the two versions of the posterior density results in the following MAP estimates of ψ, α,
and η

ψ̂ = 2.071, α̂ = 1.493, η̂ = 1.522 using Pr(Θ)

ψ̂ = 2.071, α̂ = 1.493, η̂ = 1.522 using Pr(Θ′)

It is observed that the MAP estimates of ψ, α, and η are not different from their counterparts ob-
tained using the two variations of the posterior density. However, the estimates κ̂ and β̂ under the
parameterizations Θ and Θ′ do not correspond to each other, as illustrated in the results below.

κ̂ = 17.023, β̂ = 5.493 using Pr(Θ)

κ̂ = 20.549, ê = 0.701 =⇒ β̂ = κ̂ ê/2 = 7.199 using Pr(Θ′)

Ideally, the values of κ̂ and β̂ obtained through the use of Pr(Θ′) should be the same as that obtained
when the posterior density is maximized using Pr(Θ) prior. Clearly, with MAP-based estimation, the
end results are different for the two cases.

The modes of the posterior in the κ, β and κ, e parameterizations are shown in Figures 4.5(a)
and (b), respectively. It is expected that the modes of the posterior shift as per the parameter space.
However, they should be invariant regardless of the transformation affecting the two parameter spaces.
It is observed that the mode in κ, e space, when mapped back to the κ, β space, results in a posterior
density as shown in Figure 4.5(c). This is different from the posterior density shown in Figure 4.5(a),
as the modes are at different locations. It is to be noted that the invariance property of parameter
estimates is central to inductive inference. The example considered here corroborates that MAP
estimation of the parameters of an FB5 distribution does not satisfy the invariance property, thus
resulting in unreliable estimators.

The aforementioned eccentricity transform is a straightforward transformation involving β. The
remaining four parameters are left unchanged in this case. Another parameterization involving all five
parameters of the FB5 distribution is outlined in Appendix B.1.

2http://ab-initio.mit.edu/nlopt
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(a) Pr(Θ) (b) Pr(Θ′) (c) Pr(Θ′)

Figure 4.5: Heat maps depicting the modes (MAP estimate) of the posterior density as a function
of κ, β and κ, e parameterizations. The Z-axis denotes the posterior density value in the respective
parameterization.

4.3.4 MML-based parameter estimation

In this section, the derivation of the MML-based parameter estimates of an FB5 distribution is de-
scribed. As explained in Section 2.4.2, the derivation of the MML estimates requires the formulation of
the message length expression (Equation 2.8) for encoding some observed data using the FB5 distribu-
tion. The formulation requires the use of a suitable prior density on the parameters (see Section 4.3.3).
The prior for κ is taken as h(κ), the prior of κ for the 3D vMF distribution on the two-sphere (Dowe
et al., 1996c). This results in the joint prior density Pr(ψ, α, η, κ, β) (Equation 4.25). The main bot-
tleneck involved in the MML-based parameter estimation is, however, the evaluation of the Fisher
information matrix. As shown later, its computation involves the first and second order moments
corresponding to an FB5 distribution.

Notations: Before describing the MML-based approach, the following notations are defined to be
used subsequently. The partial derivatives of the normalization constant c(κ, β) of the FB5 distribution
would be required later on. The following are the notations adopted to represent them.

c(κ, β) = c, cκ = ∂c/∂κ, cβ = ∂c/∂β

cκκ = ∂2c/∂κ2, cββ = ∂2c/∂β2, cκβ = ∂2c/∂κ∂β

Derivation of the moments of a general FB5 distribution

Kent (1982) provided the moment expressions in the case of an FB5 distribution whose mean, major
and minor axes are aligned with the standard coordinate axes. In this setup, consider a random vector
y ∼ FB5(I, κ, β), where I is the identity matrix. Then, Kent (1982) provided the following moments:

E[y] =
(
cκ/c 0 0

)T
, and

E[yyT ] = Λ =

λ1 0 0

0 λ2 0

0 0 λ3

 ,where

λ1 =
cκ
c
, λ2 =

c− cκκ + cβ
2c

, λ3 =
c− cκκ − cβ

2c
(4.27)

Based on these, the moments in the case of a general FB5 distribution, that is, whose three mutually
orthogonal axes can be oriented in any fashion, can be derived. Let x ∼ FB5(Q, κ, β) be a generic
distribution whose axes are not aligned with the coordinate axes. Recall, from Section 4.3.1, that Q
is the rotation matrix that aligns the standard coordinate axes with the axes of an FB5 distribution.
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Based on the parameterization of the FB5 distribution, it can be deduced that ∀x, ∃y ∼ FB5(I, κ, β)
such that x = Qy, and hence, xxT = QyyTQT . Using the results from Equation 4.27, we have

E[x] = QE[y] =
(
γγγ1 γγγ2 γγγ3

) (
cκ/c 0 0

)T
= cκ/c γγγ1

and E[xxT] = QE[yyT ] QT = QΛQT (4.28)

Computation of the Fisher information

As described in Section 2.4.2, the computation of the determinant of the Fisher information matrix
requires the evaluation of the second order partial derivatives of the negative log-likelihood function
with respect to the parameters of the distribution. As per the density function (Equation 4.17), the
negative log-likelihood of a datum x is given by

L(x|Θ) = log c(κ, β)− κγγγT1 x− β γγγT2 xxTγγγ2 + β γγγT3 xxTγγγ3 (4.29)

where Θ = {ψ, α, η, κ, β}. Let F1(Θ) denote the Fisher information for a single observation. the
Fisher information matrix F1(Θ) in the case of an FB5 distribution is a 5 × 5 symmetric matrix.
Further, as explained later, the determinant |F1(Θ)| is decomposed as a product of |FA| and |FS |,
where FA is the Fisher matrix associated with the angular parameters ψ, α, and η, and FS is the
Fisher matrix associated with the scale parameters κ and β.

Fisher matrix (FA) associated with ψ, α, η: FA is a 3 × 3 symmetric matrix whose elements are the
expected values of the second order partial derivatives of L with respect to θi, θj ∈ {ψ, α, η}. Let the
expectation be given as

E
[
∂2L
∂θi∂θj

]
= −κT (γγγ1)− β T (γγγ2) + β T (γγγ3) (4.30)

where the individual terms T (γγγm), m ∈ {1, 2, 3} are comprised of the expectations of the corresponding
partial differentials of γγγm. They are computed using the following identities:

T (γγγ1) = E
[
∂2(γγγT1 x)

∂θi∂θj

]
= E [x]T

∂2γγγ1

∂θi∂θj
, and

T (γγγm) = E
[
∂2(γγγTmxxTγγγm)

∂θi∂θj

]
(for m = 2, 3)

= 2

(
γγγTmE

[
xxT

] ∂2γγγm
∂θi∂θj

+

(
∂γγγm
∂θi

)T
E
[
xxT

](∂γγγm
∂θj

))
(4.31)

The terms T (γγγm) depend on the expressions for the constituent first and second order partial differ-
entials of γγγm, which are provided in Appendix B.2. Using Equations 4.28, 4.30 and 4.31, the elements
of the Fisher information matrix FA are derived as follows

Fψψ = 4β cβ/c ; Fαψ = 0; Fηψ = (cosα) 4β cβ/c

Fαα = κ cκ/c+ 2β
{

(λ1 − λ3) sin2 ψ − (λ1 − λ2) cos2 ψ
}

Fηα = β(1− 3λ1) sin 2ψ sinα

Fηη = (sin2 α)κ cκ/c

+2β

{
λ2(cos2 ψ cos2 α+ sin2 ψ) + (λ2 − λ3) cos2 α

−λ3(sin2 ψ cos2 α+ cos2 ψ) + λ1 sin2 α cos 2ψ

}
(4.32)

Fisher matrix (FS) associated with κ, β: FS is a 2 × 2 symmetric matrix whose elements are the
expectations of the second order partial derivatives of L with respect to κ and β. Differentiating
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Equation 4.29 with respect to κ and β, we get

∂L
∂κ

=
cκ
c
− γγγT1 x and

∂L
∂β

=
cβ
c
− γγγT2 xxTγγγ2 + γγγT3 xxTγγγ3

∂2L
∂κ2

=
ccκκ − c2

κ

c2
= Fκκ

∂2L
∂β2

=
ccββ − c2

β

c2
= Fββ , and

∂2L
∂κ∂β

=
ccκβ − cκcβ

c2
= Fκβ (4.33)

Fisher matrix F(Θ) associated with the 5-parameter vector Θ: It is to be noted that for θi ∈ {κ, β}
and θj ∈ {ψ, α, η}, T (γγγm) = 0 as

∂γγγm
∂θi

= 0 (γγγm given by Equation 4.19 are independent of κ, β).

Consequently, Fθiθj = 0. This allows for the computation of |F1(Θ)| as the product of |FA| and |FS |,
that is,

|F1(Θ)|=

∣∣∣∣∣∣∣∣∣∣∣∣

Fψψ Fψα Fψη 0 0

Fαψ Fαα Fαη 0 0

Fηψ Fηα Fηη 0 0

0 0 0 Fκκ Fκβ
0 0 0 Fβκ Fββ

∣∣∣∣∣∣∣∣∣∣∣∣
= |FA||FS |

Then, the Fisher information for some observed data D = {x1, . . . ,xN} is given by

|F(Θ)|= N5|F1(Θ)| (4.34)

as each element in |F1(Θ)| is multiplied by the sample size N .

Message length formulation

The message length to encode some observed data D can now be formulated by substituting the
prior density Pr(Θ) (Equation 4.25), the Fisher information |F(Θ)| and the negative log-likelihood
of the data (Equation 4.24) in the message length expression (Equation 2.8). The MML parameter
estimates are the ones that minimize the total message length. As there is no analytical form of the
MML estimates, the solution is obtained, as for the maximum likelihood and MAP cases, by using
the NLopt optimization library (Johnson, 2014). At each stage of the optimization routine, the Fisher
information needs to be calculated. However, this involves the computation of complex entities such
as the normalization constant c(κ, β) and its partial derivatives. The computation of these intricate
mathematical forms using numerical methods is discussed in Section 4.3.5.

4.3.5 Computation of the normalization constant and its derivatives

The computation of the negative log-likelihood function and the message length is hindered because
of the presence of the normalization constant and its associated derivatives. Kent (1982) provided an
asymptotic formula for c(κ, β) as 2π exp(κ)[(κ2 − 4β2)]−1/2. However, this approximation is valid for
large κ and when 2β/κ is sufficiently small. This section describes new methods that can be employed
to efficiently compute these complex functions.
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Computing log c(κ,β) and the logarithm of the partial derivatives: cκ and cκκ

The expressions of c, cκ, cκκ are related to each other. These are explained by defining the quantity

S
(m)
1 , a logarithm sum,

S
(m)
1 = log δ1 + log

∞∑
j=0

Γ(j + 1
2)

Γ(j + 1)
e2jIp+m(κ)︸ ︷︷ ︸
fj

(4.35)

where m ∈ {0, 1, 2}, p = 2j +
1

2
, δ1 = 2π

√
2

κ
, and e =

2β

κ
< 1 (by definition).

Computation of the series S
(m)
1 : We first establish that fj+1 < fj , ∀j ≥ 0 and show that S

(m)
1

converges to a finite sum as j →∞. Consider the logarithm of the ratio of consecutive terms fj and

fj+1 in S
(m)
1 , that is,

log
fj+1

fj
= log

j + 1
2

j + 1
+ 2 log e+ log

Ip+m+2(κ)

Ip+m(κ)
(4.36)

For p, v > 0, Ip+v < Ip, and the ratio
Ip+v
Ip
→ 0 for large v (Amos, 1974). Further, e < 1 implies the

above equation is the sum of negative terms. Hence, log
fj+1

fj
< 0, which means fj+1 < fj . Also,

lim
j→∞

log
fj+1

fj
= 0 + 2 log e+ lim

j→∞
log

I2j+ 1
2

+2(κ)

I2j+ 1
2
(κ)

= −∞

Hence, as lim
j→∞

fj+1

fj
= 0, S

(m)
1 is a convergent series.

For a practical implementation of the sum, we express S
(m)
1 as the modified summation

S
(m)
1 = log δ1 + log f0 + log

∞∑
j=0

tj (4.37)

where each fj is divided by the maximum term f0. For each j > 0, log fj is calculated using the previous
term log fj−1 (Equation 4.36). The new term tj = fj/f0 is then computed3 as exp(log fj−log f0). This
is because computing the difference with the maximum value and then taking the exponent ensures

numerical stability. The summation is terminated when the ratio
tj∑j
k=0 tk

< ε (a small threshold

∼ 10−6).

• Let S(c) = log c(κ, β): Substituting m = 0 in Equation 4.35 gives the logarithm of the normal-

ization constant (given in Equation 4.18). Hence, S(c) = S
(0)
1 .

• Let the jth term dependent on κ in Equation 4.18 be represented as gj(κ) = Ip/κ
p, where Ip

implicitly refers to Ip(κ). Based on the relationship between the Bessel functions Ip, Ip+1, and
the derivative I ′p in Equation 4.38 (Abramowitz and Stegun, 1965), the expressions for the first
and second derivatives of gj(κ) (Equation 4.39) are derived as

κI ′p = pIp + κIp+1 (4.38)

g′j(κ) =
Ip+1

κp
and g′′j (κ) =

Ip+2

κp
+

1

κ
.
Ip+1

κp
(4.39)

3Because of the nature of Bessel functions, log fj can get very large and can result in overflow when calculating the
exponent exp(log fj). However, dividing by f0 results in fj/f0 < 1.
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• Let S(cκ) = log cκ: Because of the similar forms of gj(κ) and g′j(κ), the expression for S(cκ)
will be similar to that of S(c) with a change in order of the Bessel functions from m = 0 in

Equation 4.35 to m = 1. Hence, S(cκ) = S
(1)
1 and an expression similar to Equation 4.37 can be

derived for S(cκ).

• Let S(cκκ) = log cκκ: Substituting m = 2 in Equation 4.35 gives the logarithm sum S
(2)
1 cor-

responding to the series with terms
Ip+2

κp
. Based on the nature of g′′j (κ) (Equation 4.39), and

noting that S(cκ) > S
(2)
1 (as Ip+1 > Ip+2 ∀ p ≥ 0), S(cκκ) is formulated as

S(cκκ) = S(cκ) + log

(
exp(S

(2)
1 − S(cκ)) +

1

κ

)
The logarithm of the partial derivatives: cβ, cκβ, and cββ

The expressions of cβ and cκβ are related and are explained using the logarithm sum S
(n)
2

S
(n)
2 = log δ2 + log

∞∑
j=1

Γ(j + 1
2)

Γ(j)
e2jIp+n(κ)︸ ︷︷ ︸
fj

(4.40)

where n ∈ {0, 1}, δ2 =
4π

β

√
2

κ
, p = 2j + 1

2 , and e =
2β

κ
. Note that S

(n)
2 is a convergent series (the

proof is based on the same reasoning as for S
(m)
1 ).

Let the jth term dependent on β, κ in Equation 4.18 be represented as gj(β, κ) = β2j Ip
κp

. Its partial

derivatives are given below. These derivatives are the terms in the series S
(n)
2 (after factoring out the

common elements as δ2).

∂gj
∂β

= 2jβ2j−1 Ip
κp

and
∂2gj
∂κ∂β

= 2jβ2j−1 Ip+1

κp

• Let S(cβ) = log cβ: this is obtained by substituting n = 0 in Equation 4.40. Hence, S(cβ) = S
(0)
2 .

• Similarly, S(cκβ) = log cκβ = S
(1)
2 .

• The expression to compute S(cββ) = log cββ is given by

S(cββ) = log

(
δ2

β

)
+ log

∞∑
j=1

Γ(j + 1
2)

Γ(j)
(2j − 1)e2jIp(κ)︸ ︷︷ ︸

fj

The practical implementation of S
(n)
2 and S(cββ) is similar to that of S

(m)
1 given by Equation 4.37.

However, in these cases, the expressions of fj and consequently tj , are modified depending on their
individual forms. Also, the series begin from j = 1, and hence, the maximum terms will correspond
to f1.

4.3.6 Evaluation of the MML estimates

For a given FB5 distribution characterized by concentration κ and eccentricity e, a random sample
of size N is generated using the method proposed by Kent et al. (2013). The angular parameters of
the true distribution are set to {ψ, α, η} = π/2. The scale parameters κ and e are varied to obtain
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different FB5 distributions and corresponding random samples. The parameters are estimated using
the sampled data and the different estimation methods. The procedure is repeated 1000 times for
each combination of N,κ, and e.

Methods of comparison

The moment, ML, MAP, and MML estimates of the data generated in these simulations are compared
with each other. The results include the two versions of MAP estimates resulting from the two forms
of the posterior distributions (Equations 4.25 and 4.26): MAP1 corresponds to the posterior with
parameterization κ, β, and MAP2 corresponds to the posterior with parameterization κ, e. The MML
estimates are obtained by minimizing the message length expression. Naturally, the estimates due to
other methods do not result in lower message lengths. Similarly, if the negative log-likelihood is used
as the comparison criterion, the maximum likelihood estimates have a lower value compared to the
others. As each estimation technique optimizes a different objective function, we need to use a metric
that impartially evaluates the different estimates.

Comparison using mean squared error (MSE) and Kullback-Leibler (KL) distance: As discussed in
Section 2.5, the mean squared error (MSE) and Kullback-Leibler (KL) distance (Kullback and Leibler,
1951) are, therefore, used to compare the various estimates. For a parameter vector Θ, and its estimate
Θ̂, the MSE is given by Equation 2.13. It is desirable for an estimator to have a lower MSE.

With respect to KL distance, an estimate wins if it results in a lower value of the KL distance, and
it is considered a better estimate. The analytical form of the KL distance between two FB5 distribu-
tions is derived in Appendix B.3. The percentage of times (out of 1000 random simulations) that the
KL distance of a particular estimator is lower than that of others is reported. When the KL distance
of different estimates is compared, because of two different versions of MAP estimation, two separate
frequency plots are presented. The KL distance of the moment, ML, and MML estimates is contrasted
with the KL distance of the MAP1 or MAP2 estimates.

Comparison using statistical hypothesis testing: In order to compare the various estimators, we con-
sider the likelihood ratio test statistic Λ (see Section 2.3.1), which is is asymptotically approximated
as an χ2 distribution with five degrees of freedom. In the current analysis of the various estimators,
the likelihood ratio resulting from the use of a particular estimate Θ̂ (that is, moment, MAP or
MML) is compared against that of a general FB5 distribution. This is equivalent to testing the null
hypothesis H0 : Θ = Θ̂ (explicit parameters) against the alternate hypothesis HA : Θ 6= Θ̂ (with five
free parameters). Assuming a statistical significance of the test as 1%, H0 is rejected when Λ > τ ,
where τ = 13.086 corresponds to the 99th percentile of an χ2 distribution with 5 degrees of freedom.
Alternatively, the test statistic can be used to evaluate the p-value, which if less than 1% (significance
of the test) amounts to rejection of H0.

For the various parameter estimates compared here, it is expected that at especially large sample
sizes, the estimates are close to the maximum likelihood estimate as determined by the corresponding
test statistic. In other words, the empirically determined test statistic is expected to be lower than
the critical value τ , which implies it has a corresponding p-value greater than 0.01.

Empirical analyses

The estimates are analyzed here in two controlled cases: (1) fixing sample size N while varying κ and
e, and (2) varying N while fixing κ and e.

Fixed sample size, varying concentration κ and eccentricity e: The results are presented when a ran-
dom sample of size N = 10 is generated from the FB5 distribution for a κ that is increased by an
order of magnitude starting from 1 to 100. The behaviour of the estimates is analyzed below.
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For κ = 1κ = 1κ = 1: The performance of the various estimates using the above described comparison method-
ologies is shown in Figure 4.6. It is observed that the bias and MSE of moment and ML estimates is
greater than that of the MAP and MML estimates. The two versions of the MAP estimates also have
a greater bias and MSE as compared to the MML estimates shown in Figure 4.6(a) and (b).

It is also observed that the MML estimates result in a lower KL distance, more than 80% of time as
compared to other estimates when MAP1 is used (see Figure 4.6c). With MAP2, the frequency of wins
for the MML estimates increases to more than 90% (see Figure 4.6d). This suggests that transforming
the parameter space greatly impacts the MAP estimates. The ML estimates win less than 5% of the
time. This is in agreement with the relatively greater MSE observed for the ML estimates.

The boxplots shown in Figures 4.6(e) and (f) show the variation of the test statistics and the
corresponding p-values. There is a greater variation for the MML estimates. However, across all
values of eccentricity, the test statistic Λ is less than the threshold τ = 13.086 and the smallest p-
value is greater than 0.01. This is true across all estimation methods, thus, suggesting that the null
hypothesis of modelling data using a particular estimate (moment, MAP or MML) is accepted at the
1% significance level.

For κ = 10κ = 10κ = 10: The comparison results are presented in Figure 4.7. Similar to the previous case (κ = 1),
the moment and ML estimates have greater bias and MSE. It is interesting to note that MAP2 has
greater bias and MSE compared to the MML estimates (see Figures 4.7(a) and (b) respectively).
However, MAP1 estimates are in close competition with those of MML. The bias and MSE are lower
for MML estimates until e ≤ 0.5 and greater compared to MAP1 estimates for e > 0.5.

The number of times the KL distance is lower for the MML estimates decreases with increasing
eccentricity (for both versions of MAP estimates). For e ≤ 0.5, the percentage of wins for the MML
estimates is greater than for all other estimates. However, for e > 0.5, MAP1 wins most of the time
(Figure 4.7c). When comparing to MAP2, the percentage of wins for MML estimates continuously
decreases. However, the number of wins for MML estimates is still always in the majority (Figure 4.7d).

These observations are in contrast to what was observed in the case of κ = 1 where MML estimates
emerged as consistently better estimates. In terms of statistical hypothesis testing, the null hypotheses
corresponding to modelling using moment, ML, MAP or MML estimates are accepted at the 1%
significance level.

For κ = 100κ = 100κ = 100: The comparison results in this case follow the same pattern as that of κ = 10 (not
illustrated here as they are similar to Figure 4.7).

When κ = 10 and 100, the MAP1 estimates perform competitively compared to the MML esti-
mates (with respect to bias and MSE). Further, the proportion of times MAP1 estimates win with
respect to KL distance progressively increases as the eccentricity increases. In general, similar results
are observed for κ > 10. However, as discussed previously, the MAP estimation is subjective to
the parameterization of the distribution as shown by the stark contrast between MAP1 and MAP2
estimates by the two parameterizations, even though they are both reasonable. The moment, ML
and MML estimates, on the other hand, are not affected by parameterization. Amongst these, MML
estimates outperform with respect to all objective metrics as described here.

Varying sample size N , fixed concentration κ and eccentricity e: The behaviour of different estimates
with increasing values of sample size from N = 10 to N = 50 is also explored. We present the results
for when κ = 10. The other values of κ = 1 and 100 follow the same trend as κ = 10. The results are
discussed for three specific eccentricity values, ranging from low eccentricity (e = 0.1), to moderate
(e = 0.5) to high (e = 0.9).

For e = 0.1e = 0.1e = 0.1: The comparison results are presented in Figure 4.8 and clearly show how, across all
estimators, the bias and MSE decrease as N increases. This is expected since as more data becomes
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Figure 4.6: Comparison of the FB5 parameter estimates when N = 10, κ = 1.

available, the accuracy of estimation increases. Figures 4.8(a) and (b) illustrate that the bias and
MSE are prominent for the moment and ML estimators. The bias of MML estimates is close to zero
and convincingly lower than both versions of MAP estimates, especially when N < 25. The MSE of
MML estimates is smaller but close to that of MAP1 estimate.
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Figure 4.7: Comparison of the FB5 parameter estimates when N = 10, κ = 10.

The proportion of wins of MML estimates with respect to KL distance is the highest with values
of at least 70% and 80% when compared with MAP1 and MAP2, respectively (see Figures 4.8c,d).
Also, hypothesis testing results indicate that the respective estimates constituting the null hypothesis
are accepted at the 1% significance level, as observed from the boxplots of test statistics and p-values
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in Figures 4.8(e) and (f).
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Figure 4.8: Comparison of the FB5 parameter estimates when κ = 10, eccentricity = 0.1.

For e = 0.5e = 0.5e = 0.5: The comparison results are presented in Figure 4.9. Similar to the previous case, the bias
and MSE of the moment and ML estimates are considerably high compared to those of the MAP and
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MML estimates. Also, MAP1 estimates have greater bias and MSE as compared to MAP2 estimates.
In this case, the bias and MSE of MAP2 and MML are close to zero.

The proportion of wins of MML estimates with respect to KL distance is higher with about 40%
and 50% when compared against MAP1 and MAP2 estimates, respectively. The proportion of wins
are, however, lower compared to the previous case when e = 0.1 as shown in Figure 4.9(c) and (d).
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Figure 4.9: Comparison of the FB5 parameter estimates when κ = 10, eccentricity = 0.5.
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Figure 4.10: Comparison of the FB5 parameter estimates when κ = 10, eccentricity = 0.9.

For e = 0.9e = 0.9e = 0.9: The comparison results are presented in Figure 4.10. In this case, again, the bias and
MSE of the moment and ML estimates are greater compared to others. For N < 20, the bias of the
MML estimates is greater when compared to those of MAP1 and MAP2 (Figure 4.10a). Further, the
MSE of the MML estimates is greater than that of MAP1 and lower than that of MAP2. As the MSE
combines the bias and variance terms, there is a trade-off that leads to this result. When N > 25,
there is almost no difference in the bias and MSE of the MAP and MML estimates.
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Also, the proportion of wins of the KL distance for MAP1 is greater than all others (Figure 4.10c).
This corresponds to the proportion of wins as illustrated through Figure 4.7(c), similar to the N =
10, κ = 10, e = 0.9 case. However, when compared with MAP2, the MML estimates have greater
proportion of wins ∼ 40% (Figure 4.10d).

The traditional ML estimators are known to have considerable bias, especially at lower sample sizes
(Dryden and Mardia, 1998; Dore et al., forthcoming). The ML estimates of κ in the case of a vMF
distribution are known to be biased (Schou, 1978; Best and Fisher, 1981; Cordeiro and Vasconcellos,
1999). The MML estimates have been shown to be effective in reducing bias in the case of a vMF
distribution (Kasarapu and Allison, 2015). Similarly, the ML estimates of a Bingham distribution,
which is a special case of an FB5 distribution, are also shown to be biased and corrections have been
proposed (Cordeiro and Klein, 1994; Kume and Wood, 2007; Dore et al., forthcoming).

As an extension, the empirical tests discussed above demonstrate that for an FB5 distribution, in
comparison to the moment and ML estimates, the MML estimates have lower bias and MSE. Further,
when compared to MAP estimates, MML estimates are competitive, particularly considering that
MAP estimates are dependent on the parameterization. As a result, the MAP estimates are incon-
sistent and should therefore be avoided. In contrast, the MML estimates are invariant to alternative
parameterizations (Oliver and Baxter, 1994; Wallace, 2005). In this regard, another parameterization
is discussed in Appendix B.1 involving all parameters of an FB5 distribution to further strengthen the
case.

4.4 Bivariate von Mises on a 3D torus

The class of bivariate von Mises (BVM) distributions was introduced by Mardia (1975b,c) to model
data distributed on the surface of a 3D torus. The study of these distributions has been partly moti-
vated by biologcal research, where it is required to model the protein dihedral angles (see Section 6.4.2).
The probability density function of the BVM distribution has the general form

f(x; Θ) ∝ exp{κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + (cos θ1, sin θ1)A(cos θ2, sin θ2)T } (4.41)

where x = (θ1, θ2), such that θ1, θ2 ∈ [−π, π) and the parameter vector Θ = (µ1, µ2, κ1, κ2,A), such
that µ1, µ2 ∈ [−π, π) are the mean angles, κ1 ≥ 0 and κ2 ≥ 0 are the concentration parameters, and
A is a 2 × 2 real-valued matrix. The term exp{κ1 cos(θ1 − µ1)} corresponds to a vMF distribution
on a circle (d = 2 in Equation 4.1) characterized by the parameters µ1 and κ1, Hence, the BVM
distribution (Equation 4.41) can be explained as a product of two von Mises circular distributions,
with an additional exponential term involving A, that accounts for the correlation.

The general form of the BVM distribution has 8 free parameters. In order to draw an analogy
to the bivariate Gaussian distribution (with 5 free parameters), sub-models of the BVM distribution
have been proposed by restricting the values that A can take (Jupp and Mardia, 1980). A 6-parameter
version was explored by Rivest (1988) and has the form

f(x; Θ) ∝ exp{κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + α cos(θ1 − µ1) cos(θ2 − µ2)

+ β sin(θ1 − µ1) sin(θ2 − µ2)} (4.42)

In particular, when α = 0 and β = λ, the above density reduces to the following 5-parameter version,
which is called the BVM Sine model (Singh et al., 2002).

f(x; Θ) = c(κ1, κ2, λ)−1 exp{κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + λ sin(θ1 − µ1) sin(θ2 − µ2)} (4.43)
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where c(κ1, κ2, λ) is the normalization constant of the distribution defined as

c(κ1, κ2, λ) = 4π2
∞∑
j=0

(
2j

j

)(
λ2

4κ1κ2

)j
Ij(κ1)Ij(κ2) (4.44)

and Iv is the modified Bessel function of first kind and order v. The 5-parameter vector will be Θ =
(µ1, µ2, κ1, κ2, λ) where λ is a real number. If λ = 0, the probability density function (Equation 4.43)
will just be the product of two independent von Mises circular distributions, and corresponds to the
case when there is no correlation between the two variables θ1 and θ2. The probability density function
in such a case is given as

f(x; Θ) = c(κ1, κ2)−1 exp{κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)} (4.45)

where c(κ1, κ2) is the normalization constant defined as c(κ1, κ2) =
1

2πI0(κ1)

1

2πI0(κ2)
. The nor-

malization constant corresponds to the product of C2(κ1) and C2(κ2), which are the normalization
constants for the respective von Mises Fisher distributions with d = 2 (see Equation 4.1).

Alternatively, when α = −β, the form of Equation 4.42 results in a different reduced form called
the BVM Cosine model (Mardia et al., 2007). The Sine and the Cosine models serve as natural
analogues of the bivariate Gaussian distribution on the 3D torus. In fact, for huge concentrations,
Singh et al. (2002) approximate the Sine model to a bivariate Gaussian distribution with the 2 × 2
covariance matrix C = [cij ], i, j ∈ {1, 2}, whose elements are given by

c11 =
κ2

κ1κ2 − λ2
, c22 =

κ1

κ1κ2 − λ2
, c12 = c21 =

λ

κ1κ2 − λ2

The limiting case approximation is valid when κ1κ2 > λ2. Also, from the covariance matrix, the
correlation coefficient ρ can be determined as (Pearson, 1895):

ρ =
c12√
c11c22

=
λ√
κ1κ2

such that |ρ|< 1 (4.46)

In order to better understand the interaction of κ1, κ2, and the correlation coefficient ρ, we provide
an example in Figure 4.11, where the distribution is shown for values of ρ = 0.1 (low correlation),
ρ = 0.5 (moderate correlation), and ρ = 0.9 (high correlation). Note that ρ can take negative values,
in which case the resultant distribution will just be a reflection in some axis (Mardia et al., 2007).

(a) ρ = 0.1 (b) ρ = 0.5 (c) ρ = 0.9

Figure 4.11: BVM Sine model showing different correlations. The distribution has µ1 = µ2 = π
2 and

κ1 = κ2 = 10. For each value of ρ, the corresponding value of λ = ρ
√
κ1κ2.
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The modelling of directional data using the BVM Sine and Cosine models has been previously
explored by Mardia et al. (2007). In this section, we discuss the MML inference using the BVM Sine
distributions. This involves deriving the MML estimates of the parameters of the distribution and
subsequently using them to model the protein dihedral angles (see Section 6.4.2).

4.4.1 Maximum likelihood parameter estimation

In applications involving modelling directional data using the BVM Sine distributions, the maximum
likelihood (ML) estimates are typically used (Boomsma et al., 2006; Mardia et al., 2007, 2008). In the
case of the FB5 distribution (Section 4.3.2), we explored the moment, ML, and MAP-based estimation.
For BVM Sine distributions, the moment and ML estimates are the same, as the BVM Sine distribution
belongs to the exponential family of distributions (Mardia et al., 2008).

Given data D = {x1, . . . ,xN}, where xi = (θi1, θi2), the ML estimates of the parameter vector
Θ = (µ1, µ2, κ1, κ2, λ) are obtained by minimizing the negative log-likelihood expression of the data
given by

L(D|Θ) =N log c(κ1, κ2, λ)− κ1

N∑
i=1

cos(θi1 − µ1)− κ2

N∑
i=1

cos(θi2 − µ2)

− λ
N∑
i=1

sin(θi1 − µ1) sin(θi2 − µ2) (4.47)

The ML estimates satisfy
∂L
∂Θ

= 0. However, as no closed form soultions exist because of the

complicated form of c(κ1, κ2, λ), an optimization library is used. In this thesis, NLopt4 is used to
numerically compute the estimates.

4.4.2 Maximum a posteriori probability (MAP) estimation

For an independent and identically distributed sample D, the MAP estimates are obtained by maxi-
mizing the posterior density Pr(Θ|D). The procedure for MAP estimation is described in Section 2.2.2.
This requires the definition of a reasonable prior Pr(Θ) on the parameter space. As shown in the case
of the FB5 distribution (Section 4.3.3), the MAP estimates vary depending on the parameterization
of the probability distribution. We consider two alternative parameterizations in the case of the BVM
Sine distribution.

Prior on the angular parameters µ1 and µ2: Since µ1, µ2 ∈ [−π, π), a uniform prior can be assumed
in this range for each of the means. Further, assuming µ1 and µ2 to be independent of each other,

their joint prior will be Pr(µ1, µ2) =
1

4π2
.

Prior on the scale parameters κ1, κ2, and λ: As discussed for Equation 4.41, the BVM density function
can be regarded as a product of two von Mises circular distributions with an additional term that
captures the correlation. In the Bayesian analysis of the von Mises circular distribution, Wallace and

Dowe (1994b) used the prior on the concentration parameter κ as Pr(κ) =
κ

(1 + κ2)3/2
. In the current

context of defining priors on κ1 and κ2 for a BVM distribution, we use the prior Pr(κ). Assuming κ1

and κ2 to be independent of each other, the joint prior is given by

Pr(κ1, κ2) =
κ1κ2

(1 + κ2
1)3/2(1 + κ2

2)3/2

4http://ab-initio.mit.edu/nlopt
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In order to define a reasonable prior on λ, we use the fact that λ2 < κ1κ2 (see Equation 4.46).

Hence, the conditional probability density of λ is given as: Pr(λ|κ1, κ2) =
1

2
√
κ1κ2

. Therefore, the

joint prior density of the scalar parameters κ1, κ2 and λ is

Pr(κ1, κ2, λ) = Pr(κ1, κ2) Pr(λ|κ1, κ2) =

√
κ1κ2

2(1 + κ2
1)3/2(1 + κ2

2)3/2

Using the product of the priors for the angular and the scale parameters, that is, Pr(µ1, µ2) and
Pr(κ1, κ2, λ), the joint prior of the parameter vector Θ, is given by

Pr(Θ) = Pr(µ1, µ2, κ1, κ2, λ) =

√
κ1κ2

8π2(1 + κ2
1)3/2(1 + κ2

2)3/2
(4.48)

The prior density Pr(Θ) can be used along with the likelihood function to formulate the posterior
density Pr(Θ|D) (see Section 2.2.2). The MAP estimates correspond to the maximized value of the
posterior Pr(Θ|D).

Non-linear transformations of the parameter space

We consider non-linear transformations of the parameter space, in order to demonstrate that the
MAP estimates are not invariant in different parameterizations of the probability distribution. For
the FB5 distribution, we explained a simple non-linear transformation involving the eccentricity pa-
rameter (Section 4.3.3). In the current context of a BVM Sine distribution, we discuss a similar
non-linear transformation of the parameter space involving the correlation parameter λ. Additionally,
we also describe a parameterization that transforms all the five parameters.

An alternative parameterization involving λ: The BVM Sine probability density function (Equa-
tion 4.43) can be reparameterized in terms of the correlation coefficient ρ, instead of λ, by using the
relationship λ = ρ

√
κ1κ2 (as per Equation 4.46). If Θ′ = (µ1, µ2, κ1, κ2, ρ) denotes the modified vector

of parameters, the modified prior density Pr(Θ′) is obtained by dividing Pr(Θ) with the Jacobian of

the transformation J =
∂ρ

∂λ
=

1√
κ1κ2

as follows

Pr(Θ′) =
Pr(µ1, µ2, κ1, κ2, λ)

J
=

κ1κ2

8π2(1 + κ2
1)3/2(1 + κ2

2)3/2
(4.49)

With this transformation, the posterior density Pr(Θ′|D) can be computed, and subsequently used to
determine the MAP estimates (see Equation 2.3).

An alternative parameterization involving Θ: In addition to the transformation of the correlation
parameter λ, we study another transformation that was proposed by Rosenblatt (1952). The method
transforms a given continuous k-variate probability distribution into the uniform distribution on the
k-dimensional unit hypercube. Such a transformation applied on the prior density of the parame-
ter vector Θ results in the prior transforming to a uniform distribution. Hence, estimation in this
transformed parameter space is equivalent to the corresponding maximum likelihood estimation.
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For the 5-parameter vector Θ = (µ1, µ2, κ1, κ2, λ), the Rosenblatt (1952) transformation to Θ′′ =
(z1, z2, z3, z4, z5) involves computing the cumulative densities Fi, ∀ i ∈ {1, . . . , 5} as follows

z1 = Pr(X1 ≤ µ1) = F1(µ1)

z2 = Pr(X2 ≤ µ2|X1 = µ1) = F2(µ2|µ1)

z3 = Pr(X3 ≤ κ1|X2 = µ2, X1 = µ1) = F3(κ1|µ2, µ1)

z4 = Pr(X4 ≤ κ2|X3 = κ1, X2 = µ2, X1 = µ1) = F4(κ2|κ1, µ2, µ1)

z5 = Pr(X5 ≤ λ|X4 = κ2, X3 = κ1, X2 = µ2, X1 = µ1) = F5(λ|κ2, κ1, µ2, µ1)

As the cumulative densities are bounded by 1, the above transformation results in 0 ≤ zi ≤ 1, i =
{1, . . . , 5}. Further, Rosenblatt (1952) argue that each zi is uniformly and independently distributed
on [0, 1], so that the prior density in this transformed parameter space is

Pr(Θ′′) = Pr(z1, z2, z3, z4, z5) = 1 (4.50)

In order to achieve such a transformation, we need to express zi in terms of the original parame-
ters. Based on the assumptions made in the formulation of the prior Pr(Θ), we derive the following
relationships:

z1 =

∫ µ1

−π

1

2π
dµ1 =

µ1 + π

2π
=⇒ µ1 = π(2z1 − 1) and z2 =

µ2 + π

2π
=⇒ µ2 = π(2z2 − 1)

Based on the independence assumption in the formulation of priors of angular and scale parameters,
we have z3 = F3(κ1|µ2, µ1) = F3(κ1), and therefore we have

z3 =

∫ κ1

0
Pr(κ) dκ =

∫ κ1

0

κ

(1 + κ2)3/2
dκ = 1− cos(arctanκ1)

Hence, κ1 = tan(arccos(1− z3)) and κ2 = tan(arccos(1− z4))

Further, F5(λ|κ2, κ1, µ2, µ1) = F5(λ|κ2, κ1), as λ is independent of µ1 and µ2. Hence, the invertible
transformation corresponding to λ is as follows

z5 = F5(λ|κ2, κ1) =

∫ λ

−√κ1κ2

1

2
√
κ1κ2

dλ =
1

2

(
λ√
κ1κ2

+ 1

)
so that λ can be expressed as a function of z3, z4, and z5. The transformed BVM Sine probability
density function f(x,Θ′′) is obtained by substituting the expressions of Θ in terms of zi, 1 ≤ i ≤ 5 in
f(x,Θ) (Equation 4.43).

In summary, we consider two additional parameterizations of the BVM Sine probability density.
For statistical invariance, the estimates of the parameters should be affected by the same transforma-
tion in alternative parameterizations. The MAP estimation does not satisy this property, as illustrated
in the context of estimating the parameters of a FB5 distribution (see Section 4.3.3). The same be-
haviour is exhibited in the current context of estimating the parameters of a BVM Sine distribution.
We describe this behaviour through an example.

An example demonstrating the effects of alternative parameterizations

An example of estimating parameters using the posterior distributions resulting from the various prior
densities (Equations 4.48 - 4.50) is described here. A random sample of size N = 10 is generated from a
BVM Sine distribution (Singh et al., 2002). The true parameters of the distribution are µ1 = µ2 = π/2,
κ1 = κ2 = 10, and λ = 9 (corresponding to a correlation coefficient of ρ = 0.9).
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The MAP estimators are obtained by maximizing the posterior densities using the non-linear
optimization library NLopt (Johnson, 2014) in conjunction with derivative-free optimization (Powell,
1994). The differences in the estimates are explained below.

We observe that the estimates of the angular parameters, µ1 and µ2, are similar across the different
parameterizations, with values close to 1.730 and 1.695 radians respectively. In the case of using Θ′′,
the estimated values ẑ1 and ẑ2 are transformed back into µ̂1 and µ̂2 to allow comparison of similar
quantities.

µ̂1 = 1.730, µ̂2 = 1.695 using Pr(Θ)

µ̂1 = 1.731, µ̂2 = 1.696 using Pr(Θ′)

ẑ1 = 0.276, ẑ2 = 0.270 =⇒ µ̂1 = 1.735, µ̂2 = 1.698 using Pr(Θ′′)

The estimation of the scale parameters, κ1, κ2, and λ however, results in different values. We
observe that, in the case of Pr(Θ′), ρ̂ = 0.684, which translates to λ̂ = 6.565. This is different from the
estimated value of λ̂ = 5.017 using Pr(Θ). The values of κ̂1 and κ̂2 are also different. Further, with
Pr(Θ′′), the transformation of estimated zi into the Θ parameter space result in different estimates.

κ̂1 = 4.451, κ̂2 = 14.158, λ̂ = 5.017 using Pr(Θ)

κ̂1 = 5.311, κ̂2 = 17.338, ρ̂ = 0.684 =⇒ λ̂ = 6.565 using Pr(Θ′)

ẑ3 = 0.900, ẑ4 = 0.970, ẑ5 = 0.924 =⇒ κ̂1 = 9.998, κ̂2 = 33.931, λ̂ = 15.628 using Pr(Θ′′)

The above example demonstrates a drawback of the MAP-based estimation with respect to pa-
rameter invariance. As discussed in Section 2.2.2, the MAP estimator corresponds to the mode of the
posterior distribution. The mode is, however, not invariant under varying parameterizations. We use
the above parameterizations in analyzing the behaviour of the various estimators in the experiments
section (Section 4.4.5).

4.4.3 MML-based parameter estimation

In this section, the derivation of the MML-based parameter estimates of a BVM Sine distribution is
described. As explained in Section 2.4.2, the derivation of the MML estimates requires the formulation
of the message length expression (Equation 2.8) for encoding some observed data using the BVM Sine
distribution.

The formulation requires the use of a suitable prior density on the parameters. We use the pa-
rameterization Θ and the corresponding prior Pr(Θ) that was formulated in the MAP analyses in
Section 4.4.2. It is to be noted that the MML estimation is invariant to the parameterization used
(Oliver and Baxter, 1994).

Notations: Before describing the MML approach, the following notations are defined as these are
used in the following discussion. The partial derivatives of the normalization constant c(κ1, κ2, λ) of
the BVM Sine distribution would be required later on. The following are the notations adopted to
represent them.

c(κ1, κ2, λ) = c, cκ1 = ∂c/∂κ1, cκ2 = ∂c/∂κ2, cλ = ∂c/∂λ

cκ1κ1 = ∂2c/∂κ2
1, cκ2κ2 = ∂2c/∂κ2

2, cλλ = ∂2c/∂λ2,

cκ1κ2 = ∂2c/∂κ1∂κ2, cκ1λ = ∂2c/∂κ1∂λ, cκ2λ = ∂2c/∂κ2∂λ

We also require the determinant of the Fisher information for the MML estimation of parameters. We
use the above notations in the following computation of the Fisher information. The computation of
these partial derivatives is explained in Section 4.4.4.
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Computation of Expectations

In order to proceed with the derivation of the Fisher information, we first outline the derivation of
some of the required expectation quantities. For random variables θ1, θ2 sampled from the BVM Sine
distribution (Equation 4.43), we compute the following quantities: E[cos(θ1 − µ1)], E[cos(θ2 − µ2)],
E[cos(θ1 − µ1) cos(θ2 − µ2)], and E[sin(θ1 − µ1) sin(θ2 − µ2)].

Singh et al. (2002) derived the normalization constant as an infinite series expansion given by
Equation 4.44. We use the following integral form of the normalization constant to derive the above
mentioned expectations, as a function of κ1, κ2, and λ.

c(κ1, κ2, λ) =

∫ π

−π

∫ π

−π
exp{κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + λ sin(θ1 − µ1) sin(θ2 − µ2)} dθ2 dθ1

On differentiating the above integral with respect to κ1, we get

∂

∂κ1
c(κ1, κ2, λ) =

∫ π

−π

∫ π

−π
cos(θ1 − µ1) exp{κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)

+ λ sin(θ1 − µ1) sin(θ2 − µ2)} dθ2 dθ1

= c(κ1, κ2, λ) E[cos(θ1 − µ1)]

Hence, the expectation can be represented using the above defined notation as

E[sin(θ1 − µ1)] = 0 = E[sin(θ2 − µ2)]

E[cos(θ1 − µ1)] =
1

c(κ1, κ2, λ)

∂c(κ1, κ2, λ)

∂κ1
=
cκ1
c

Similarly, E[cos(θ2 − µ2)] =
cκ2
c

and E[sin(θ1 − µ1) sin(θ2 − µ2)] =
cλ
c

(4.51)

On differentiating twice the integral form of c(κ1, κ2, λ) with respect to κ1, κ2, and λ, we get the
following relationships

E[cos(θ1 − µ1) cos(θ2 − µ2)] =
cκ1κ2
c

,

E[cos(θ1 − µ1) sin(θ2 − µ2)] = 0 = E[sin(θ1 − µ1) cos(θ2 − µ2)] (4.52)

Computation of the Fisher information

As described in Section 2.4.2, the computation of the determinant of the Fisher information matrix
requires the evaluation of the second order partial derivatives of the negative log-likelihood function
with respect to the parameters of the distribution. As per the density function (Equation 4.43), the
negative log-likelihood of a datum x = (θ1, θ2) is given by

L(x|Θ) = log c(κ1, κ2, λ)− κ1 cos(θ1 − µ1)− κ2 cos(θ2 − µ2)− λ sin(θ1 − µ1) sin(θ2 − µ2) (4.53)

where Θ = (µ1, µ2, κ1, κ2, λ) as indicated before. Let F1(Θ) denote the Fisher information for a
single observation. the Fisher information matrix F1(Θ) in the case of an FB5 distribution is a 5× 5
symmetric matrix. Further, the determinant |F1(Θ)| is decomposed as a product of |FA| and |FS |,
where FA is the Fisher matrix associated with the angular parameters µ1 and µ2, and FS is the Fisher
matrix associated with the scale parameters κ1, κ2, and λ.

Fisher matrix (FA) associated with µ1, µ2: FA is a 2 × 2 symmetric matrix whose elements are
the expected values of the second order partial derivatives of L with respect to µ1 and µ2. On
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differentiating Equation 4.53 with respect to µ1, we get

∂L
∂µ1

= −κ1 sin(θ1 − µ1) + λ cos(θ1 − µ1) sin(θ2 − µ2) (4.54)

and
∂2L
∂µ2

1

= κ1 cos(θ1 − µ1) + λ sin(θ1 − µ1) sin(θ2 − µ2)

Hence, Fµ1µ1 = E
[
∂2L
∂µ2

1

]
= κ1 E[cos(θ1 − µ1)] + λE[sin(θ1 − µ1) sin(θ2 − µ2)]

= κ1
cκ1
c

+ λ
cλ
c

Similarly, Fµ2µ2 = E
[
∂2L
∂µ2

2

]
= = κ2

cκ2
c

+ λ
cλ
c

(4.55)

On taking the derivative of Equation 4.54 with respect to µ2, we get

∂2L
∂µ2∂µ1

= −λ cos(θ1 − µ1) cos(θ2 − µ2)

so that, Fµ2µ1 = E
[

∂2L
∂µ2∂µ1

]
= −λE[cos(θ1 − µ1) cos(θ2 − µ2)] = −λcκ1κ2

c
(4.56)

Fisher matrix (FS) associated with κ1, κ2, λ: FS is a 3 × 3 symmetric matrix whose elements are
the expected values of the second order partial derivatives of L with respect to κ1, κ2, and λ. On
differentiating Equation 4.53 with respect to κ1, κ2, and λ, we get

∂L
∂κ1

=
cκ1
c
− cos(θ1 − µ1) and

∂L
∂λ

=
cλ
c
− sin(θ1 − µ1) sin(θ2 − µ2)

∂2L
∂κ2

1

=
ccκ1κ1 − c2

κ1

c2
= Fκ1κ1

∂2L
∂κ2

2

=
ccκ2κ2 − c2

κ2

c2
= Fκ2κ2

∂2L
∂λ2

=
ccλλ − c2

λ

c2
= Fλλ

∂2L
∂κ1∂κ2

=
ccκ1κ2 − cκ1cκ2

c2
= Fκ1κ2

∂2L
∂λ∂κ1

=
ccλκ1 − cλcκ1

c2
= Fλκ1

∂2L
∂λ∂κ2

=
ccλκ2 − cλcκ2

c2
= Fλκ2 (4.57)

Fisher matrix F(Θ) associated with the 5-parameter vector Θ: On differentiating Equation 4.54 with
respect to κ1 and computing the expectation of the differential, we get

∂2L
∂κ1∂µ1

= − sin(θ1 − µ1) and
∂2L
∂λ∂µ1

= cos(θ1 − µ1) sin(θ2 − µ2)

Hence, E
[

∂2L
∂κ1∂µ1

]
= 0 = Fκ1µ1 and E

[
∂2L
∂λ∂µ1

]
= 0 = Fλµ1
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This allows for the computation of |F1(Θ)| as the product of |FA| and |FS |, that is,

|F1(Θ)|=

∣∣∣∣∣∣∣∣∣∣∣∣

Fµ1µ1 Fµ1µ2 0 0 0

Fµ2µ1 Fµ2µ2 0 0 0

0 0 Fκ1κ1 Fκ1κ2 Fκ1λ
0 0 Fκ2κ1 Fκ2κ2 Fκ2λ
0 0 Fλκ1 Fλκ2 Fλλ

∣∣∣∣∣∣∣∣∣∣∣∣
= |FA||FS |

Then, the Fisher information for some observed data D = {x1, . . . ,xN} is given by

|F(Θ)|= N5|F1(Θ)| (4.58)

as each element in |F1(Θ)| is multiplied by the sample size N .

Message length formulation

The message length to encode some observed data D can now be formulated by substituting the
prior density Pr(Θ) (Equation 4.48), the Fisher information |F(Θ)| and the negative log-likelihood
of the data (Equation 4.47) in the message length expression (Equation 2.8). The MML parameter
estimates are the ones that minimize the total message length. As there is no analytical form of the
MML estimates, the solution is obtained, as for the maximum likelihood and MAP cases, by using
the NLopt optimization library (Johnson, 2014). At each stage of the optimization routine, the Fisher
information needs to be calculated. However, this involves the computation of complex entities such
as the normalization constant c(κ, β) and its partial derivatives. The computation of these intricate
mathematical forms using numerical methods is discussed next in Section 4.4.4.

4.4.4 Computation of the normalization constant and its derivatives

The computation of the negative log-likelihood and the message length requires the normalization
constant and its associated derivatives. In this section, the description of the methods that can be
employed to efficiently compute these complex functions is explored. Recall that in Section 4.3.5, in
the case of the FB5 distribution, we showed how to implement these partial derivatives as infinite
summations. In the following discussion, we will take the same approach to implement the necessary
partial derivatives as summations for the BVM Sine distribution.

Computing log c(κ1, κ2, λ) and the logarithm of the partial derivatives:
cκ1 , cκ2 , cκ1κ1 , cκ2κ2 and cκ1κ2

The expressions of c, cκ1 , cκ2 , cκ1κ1 , cκ2κ2 , and cκ1κ2 are related to each other. These expressions are

explained by defining the quantity S
(m,n)
1 , a logarithm sum,

S
(m,n)
1 = log δ1 + log

∞∑
j=0

(
2j

j

)
ejIj+m(κ1)Ij+n(κ2)︸ ︷︷ ︸

fj

(4.59)

where m,n ∈ {0, 1, 2}, δ1 = 4π2, and e =
λ2

4κ1κ2
< 1 (by definition).

Computation of the series S
(m,n)
1 : We first establish that fj+1 < fj ∀j ≥ 0 and show that S

(m,n)
1

converges to a finite sum as j →∞. Consider the logarithm of the ratio of consecutive terms fj and
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fj+1 in S
(m,n)
1

log
fj+1

fj
= log

(
2j+2
j+1

)(
2j
j

) + log e+ log
Ij+m+1(κ1)

Ij+m(κ1)
+ log

Ij+n+1(κ2)

Ij+n(κ2)
(4.60)

for p, v > 0, Ip+v < Ip, and the ratio
Ip+v
Ip
→ 0 as p → ∞ (Amos, 1974). Further, e < 1 implies the

above equation is the sum of negative terms. Hence, log
fj+1

fj
< 0, which means fj+1 < fj . Also,

lim
j→∞

log
fj+1

fj
= log 4 + log e+ lim

j→∞
log

Ij+m+1(κ1)

Ij+m(κ1)
+ lim
j→∞

log
Ij+n+1(κ2)

Ij+n(κ2)
= −∞

Hence, as lim
j→∞

fj+1

fj
= 0, S

(m,n)
1 is a convergent series.

For a practical implementation of the sum, we need to express S
(m,n)
1 as the modified summation

S
(m,n)
1 = log δ1 + log f0 + log

∞∑
j=0

tj (4.61)

where each fj is divided by the maximum term f0. For each j > 0, log fj is calculated using the previous
term log fj−1 (Equation 4.60). The new term tj = fj/f0 is then computed5 as exp(log fj−log f0). This
is because computing the difference with the maximum value and then taking the exponent ensures

numerical stability. The summation is terminated when the ratio
tj∑j
k=0 tk

< ε (a small threshold

∼ 10−6).

• Let S(c) = log c(κ1, κ2, λ): Substituting m = 0 and n = 0 in Equation 4.59 gives the logarithm

of the normalization constant (given in Equation 4.44). Hence, S(c) = S
(0,0)
1 .

• Let the jth term dependent on κ1 in Equation 4.44 be represented as gj(κ1) = Ij/κ
j
1, where Ij

implicitly refers to Ij(κ1). Based on the relationship between the Bessel functions Ij , Ij+1, and
the derivative I ′j in Equation 4.62 (Abramowitz and Stegun, 1965), the expressions for the first
and second derivatives of gj(κ1) (Equation 4.63) are derived as

κ1I
′
j = jIj + κ1Ij+1 (4.62)

g′j(κ1) =
Ij+1

κj1
and g′′j (κ1) =

Ij+2

κj1
+

1

κ1
.
Ij+1

κj1
(4.63)

• Let S(cκ1) = log cκ1 : Because of the similar forms of gj(κ1) and g′j(κ1), the expression for S(cκ1)
will be similar to that of S(c) with a change in order of the Bessel functions from m = 0 in

Equation 4.59 to m = 1. Hence, S(cκ1) = S
(1,0)
1 and an expression similar to Equation 4.61 can

be derived for S(cκ1).

• Let S(cκ2) = log cκ2 : Similar to the computation of S(cκ1) above, if we substitute m = 0, n = 1

in Equation 4.61, we obtain the expression for S(cκ2) = S
(0,1)
1 .

• Let S(cκ1κ2) = log cκ1κ2 : Similar to the above computations of S(cκ1) and S(cκ2), if we substitute

m = 1, n = 1 in Equation 4.61, we obtain the expression for S(cκ1κ2) = S
(1,1)
1 .

5Because of the nature of Bessel functions, log fj can get very large and can result in overflow when calculating the
exponent exp(log fj). However, dividing by f0 results in fj/f0 < 1.
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• Let S(cκ1κ1) = log cκ1κ1 : Substituting m = 2, n = 0 in Equation 4.59 gives the logarithm sum

S
(2,0)
1 corresponding to the series with terms

Ij+2

κj1
. Based on the nature of g′′j (κ1) (Equation 4.63),

and noting that S(cκ1) > S
(2,0)
1 (as Ij+1 > Ij+2 ∀ j ≥ 0), S(cκ1κ1) is formulated as

S(cκ1κ1) = S(cκ1) + log

(
exp(S

(2,0)
1 − S(cκ1)) +

1

κ1

)
• Let S(cκ2κ2) = log cκ2κ2 : Based on the same reasoning as above, we have

S(cκ2κ2) = S(cκ2) + log

(
exp(S

(0,2)
1 − S(cκ2)) +

1

κ2

)
The logarithm of the partial derivatives: cλ, cκ1λ

, cκ2λ
, and cλλ

The expressions of cλ, cκ1λ, and cκ2λ are related and are explained using the logarithm sum S
(m,n)
2

S
(m,n)
2 = log δ2 + log

∞∑
j=1

(
2j

j

)
jejIj+m(κ1)Ij+n(κ2)︸ ︷︷ ︸

fj

(4.64)

where m,n ∈ {0, 1}, δ2 =
8π2

λ
, and e =

λ2

4κ1κ2
. Note that S

(m,n)
2 is a convergent series (the proof is

based on the same reasoning as for S
(m,n)
1 ).

Let the jth term dependent on λ, κ1 in Equation 4.44 be represented as gj(λ, κ1) = λ2j Ij

κj1
. Its

partial derivatives are given below. These derivatives are the terms in the series S
(m,n)
2 (after factoring

out the common elements as δ2).

∂gj
∂λ

= 2jλ2j−1 Ij

κj1
and

∂2gj
∂κ1∂λ

= 2jλ2j−1 Ij+1

κj1

• Let S(cλ) = log cλ: this is obtained by substituting m = 0 and n = 0 in Equation 4.64. Hence,

S(cλ) = S
(0,0)
2 .

• Similarly, S(cκ1λ) = log cκ1λ = S
(1,0)
2 and S(cκ2λ) = log cκ2λ = S

(0,1)
2 .

• The expression to compute S(cλλ) = log cλλ is given by

S(cλλ) = log

(
δ2

λ

)
+ log

∞∑
j=1

(
2j

j

)
j(2j − 1)ejIj(κ1)Ij(κ2)︸ ︷︷ ︸

fj

The practical implementation of S
(m,n)
2 and S(cλλ) is similar to that of S

(m,n)
1 given by Equation 4.61.

However, in these cases, the expressions of fj and consequently tj , are modified depending on their
specific forms. Also, the series begin from j = 1 and, hence, the respective maximum terms will
correspond to f1.

4.4.5 Evaluation of the MML estimates

For a given BVM Sine distribution characterized by concentration parameters κ1, κ2 and correlation
coefficient ρ, a random sample of size N is generated using the method proposed by Mardia et al.
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(2007). The angular parameters of the true distribution are set to {µ1, µ2} = π/2. The scale param-
eters κ1, κ2, and ρ are varied to obtain different BVM Sine distributions and corresponding random
samples. The parameters are estimated using the sampled data and the different estimation methods.
The procedure is repeated 1000 times for each combination of N,κ1, κ2, and ρ.

Methods of comparison

The comparison methodology is similar to the one adopted in the case of the different estimators of the
FB5 distribution (Section 4.3.6). For the BVM Sine distribution, the ML, MAP, and MML estimates
of the data generated in these simulations are compared with each other.

The results include the three versions of MAP estimates resulting from the three forms of the
posterior distributions (Equations 4.48-4.50): MAP1 corresponds to the posterior with parameter-
ization Θ = (µ1, µ2, κ1, κ2, λ), MAP2 corresponds to the posterior with parameterization Θ′ =
(µ1, µ2, κ1, κ2, ρ), and MAP3 corresponds to the posterior with parameterization Θ′′ = (z1, z2, z3, z4, z5).
As noted in Section 4.4.2, the MAP3 estimator will be the same as the ML estimator due to the Rosen-
blatt (1952) transformation of Θ to Θ′′.

In order to compare the various estimators, we use again the mean squared error (MSE) and
Kullback-Leibler (KL) distance (Section 2.5). The estimates are also compared using statistical hy-
pothesis testing. The empirical testing is as discussed in Section 4.3.6. For a parameter vector Θ
characterizing a true BVM Sine distribution, and its estimate Θ̂, we analyze the MSE and KL dis-
tance of Θ̂ with respect to the true parameter vector Θ.

The analytical form of the KL distance between two BVM distributions is derived in Appendix C.1.
As in the case of the FB5 experimental analyses (Section 4.3.6), we analyze the percentage of times
(wins) the KL distance of a particular estimator is smaller than that of others. When the KL distance
of different estimates is compared, because of three different versions of MAP estimation, three separate
frequency plots are presented. corresponding to the MAP1, MAP2, and MAP3 estimators.

With respect to statistical hypothesis testing, the likelihood ratio test statistic is asymptotically
approximated as an χ2 distribution with five degrees of freedom (see Sections 2.3.1 and 4.3.6). For
the various parameter estimates compared here, it is expected that at especially large sample sizes,
the estimates are close to the ML estimate. In other words, the empirically determined test statistic is
expected to be lower than the critical value τ = 13.086, corresponding to a p-value greater than 0.01.

Empirical analyses

As per the experimental setup, we present the results for when the original distribution from which
the data is sampled has κ1 = 1 and κ2 = 10. The correlation coefficient ρ is varied between 0 and
1, so that we obtain different values for the correlation parameter λ (Equation 4.46). We discuss the
results for varying values of sample sizes N , and ρ = 0.1, 0.5, 0.9, corresponding to a low, moderate,
and high correlation, respectively.

For ρ = 0.1 :ρ = 0.1 :ρ = 0.1 : The results are presented in Figure 4.12. Compared to the ML estimators, the MAP and
MML estimators result in lower bias and MSE for all values of N . Both the bias and MSE continue to
decrease as the sample size increases, as the estimation improves with more evidence for all methods.
When compared with MAP1 and MAP2, the MML estimators have greater bias and greater MSE. As
with the FB5 distribution, we observe that that MAP1 and MAP2 result in different estimators, and
therefore, result in different bias and MSE values.

The KL distance with respect to MAP1 is in favour of the MAP1 estimators. The MAP1 estimates
result in lower KL distance as compared to the other estimators almost 50% of the 1000 simulations
for each N (Figure 4.12c). However, the MML estimators win when the MAP2 and MAP3 versions
are used. When MAP3 is used, the MML estimators have a smaller KL distance in close to 70% of
the simulations (Figure 4.12e). Further analysis using statistical hypothesis testing illustrates that
the null hypotheses corresponding to the MAP and MML estimators are accepted (p-values greater
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than 0.01 in Figure 4.12f). at the 1% significance level.
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Figure 4.12: Comparison of the parameter estimates when κ1 = 1, κ2 = 10, ρ = 0.1.

For ρ = 0.5 :ρ = 0.5 :ρ = 0.5 : Similar to when ρ = 0.1, we observe that the bias and MSE of the MAP and MML
estimators are lower than the ML estimators for different values of N . In contrast to ρ = 0.1, the
bias of the MML estimator is lower than the MAP1 estimator but higher than the MAP2 estimator
(Figure 4.13a). As with the previous case, MAP-based estimation result in different estimators.
Further analysis of the estimators using KL distance and statistical hypothesis testing follow the same
pattern as when ρ = 0.1.
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Figure 4.13: Comparison of the parameter estimates when κ1 = 1, κ2 = 10, ρ = 0.5.

For ρ = 0.9 :ρ = 0.9 :ρ = 0.9 : The results are presented in Figure 4.14. As with the previous two cases, we observe
that the ML estimators have the greatest bias and MSE for all values of N . The bias of the MML
estimators is lower than all the MAP estimators. However, the MSE of the MML estimators is greater
compared to the MAP1 or MAP2 estimators. Contrary to the previous two cases, we observe that the
frequency of wins of KL distance for the MML estimators is lower when compared to MAP2 estimation
(Figure 4.14e). Further, the results following the statistical hypothesis testing follow the same trend
as the previous two cases. As the same size increases, the different estimators converge to the ML
estimators as seen from the high p-values (Figure 4.14g).

The empirical analyses of the controlled experiments discussed above indicate that the ML estima-
tors are biased estimators. The same was observed with the vMF and FB5 directional distributions.
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(d) KL distance (MAP version 2)
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 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 15 20 25 30 35 40 45 50

p
-v

al
u
es

Sample size

MAP1

MAP2

MML

(g) Variation of p-values

Figure 4.14: Comparison of the parameter estimates when κ1 = 1, κ2 = 10, ρ = 0.9.

Also, we observe that the MAP estimation method result in different estimators depending on how
the distribution is parameterized. As with the FB5 distribution, the MAP estimators are shown to be
not invariant. In this context, the MML estimators are empirically demonstrated to have lower bias
than the traditional ML estimators and are invariant to alternative parameterizations.

4.5 Summary

This chapter presented a study of three commonly used directional probability distributions, namely,
the multivariate von Mises-Fisher, the three-dimesional Kent, and the bivariate von Mises. In the case
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of a vMF distribution, the ML estimate of the concentration parameter is approximated in several
ways, as discussed in Section 4.2.1, and shown to result in a biased estimator. This is empirically
demonstrated in Section 4.2.3. In comparison, the derived MML estimators are shown to have lower
bias and mean squared error. They also fare better when evaluated using an objective metric such as
the Kullback-Leibler distance. The MML estimates, therefore, serve as improvements to the tradition-
ally used ML estimates. We published our MML-based inference of vMF distributions in Kasarapu
and Allison (2015) .

The vMF distribution is widely preferred due to its simplicity and the relative ease of parameter
estimation. The Kent distribution, on the other hand, is a generalization of the vMF distribution.
Although it is more suitable for modelling directional data, its use is limited due to the complex
mathematical expressions arising from formulating the negative log-likelihood function. In this chap-
ter, these difficulties are addressed and a better estimator, in terms of the MML estimator is derived.
The MML estimation involves computational challenges, more than those associated with the tradi-
tional moment, ML or MAP-based approaches. However, we resolved these challenges, and a superior
estimator is provided. The estimator has lower bias and mean squared error compared to the moment
and ML estimators. It is robust to parameterization, unlike the MAP estimator, and performs better
in terms of the Kullback-Leibler distance (Kasarapu, 2015).

The above observations are in agreement with the BVM distribution as well. Even in this case,
the MML estimators are shown to be superior compared to the traditional ML and MAP estimators.
Therefore, the MML estimators provide a strong case to be used in modelling tasks involving directional
data. We use the MML estimators in Chapter 6, where we study the inference of mixtures of directional
probability distributions.



Chapter 5

Mixture modelling

5.1 Introduction

The previous chapters focused on the parameter estimation of single component probability distribu-
tions. In most real-world settings, however, the true data generating model is usually unknown and is
potentially multimodal. To describe such multimodal data, mixtures of component probability distri-
butions must be considered. Mixture models are common tools in statistical pattern recognition tasks
(McLachlan and Basford, 1988). They offer a mathematical basis to explain data in several fields as
diverse as astronomy, biology, ecology, engineering, and economics, amongst many others (McLachlan
and Peel, 2000).

A mixture model is composed of component probabilistic models; a component may correspond
to a subtype, kind, species, or sub-population of the observed data. These models aid in the identi-
fication of hidden patterns in the data through sound probabilistic formalisms. Mixture models have
been extensively employed in machine learning tasks such as classification and unsupervised learning
(Titterington et al., 1985; McLachlan and Peel, 2000; Jain et al., 2000).

Much of the literature on mixture modelling concerns the theory and application of mixtures of
Gaussian distributions (McLachlan and Peel, 2000; Jain and Dubes, 1988). The importance of Gaus-
sian mixtures in practical applications is well established, and their use in several research disciplines
has been partly motivated by their computational tractability (McLachlan and Peel, 2000). Thus, we
consider the Gaussian mixtures elaborately in this chapter and discuss mixture modelling using other
probability distributions of interest in Chapter 6.

The general problem of mixture modelling involves determining the number of components, the
probabilities of those components, and estimating the parameters of each of the component distribu-
tions. The simultaneous inference of the mixture parameters and the number of components involves
the difficult problem of balancing the trade-off between two conflicting objectives: low model complex-
ity as determined by the number of components and their respective parameters, versus goodness-of-fit
to the observed data.

The generalized methodology for mixture modelling relies on the following elements:

1. An estimator of the parameters of each component of a mixture,

2. An objective criterion, that is a cost or a score, that can be used to compare two hypothetical
mixtures and decide which is better, and

3. A search strategy for the best number of components.

Estimation of component parameters: For a given number of components, the conventional method
of estimating the parameters of a mixture relies on the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977), where the parameters are iteratively updated using the estimates that opti-
mize an objective function. Traditional optimization is based on maximizing the log-likelihood of the
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data (ML-based) or maximizing the posterior probability density (in the case of MAP-based estima-
tion). In contrast, as per the MML framework, the parameters are updated by their MML estimates
that minimize the total message length. The standard EM algorithm is a local optimization method
that is sensitive to initialization and, in certain cases, may converge to the boundary of the parameter
space (Krishnan and McLachlan, 1997; Figueiredo and Jain, 2002).

Scoring function: In order to compare competing mixture models, there have been numerous scoring
functions proposed in the literature that aim to evaluate a given mixture model. A review of these
methods is presented in McLachlan and Peel (2000). These methods are motivated by a common
theme to balance the complexity of a chosen mixture model and its goodness-of-fit to the data. The
scoring functions that quantify the model complexity based on just the number of components are
the Akaike Information Criterion (AIC) (Akaike, 1974), the Bayesian Information Criterion (BIC)
(Schwarz, 1978; Rissanen, 1978), and the Integrated Completed Likelihood (ICL) criterion (Biernacki
et al., 2000). It is to be noted that AIC and BIC are shown to be approximations of the general MML
framework (Figueiredo and Jain, 2002).

The information-theoretic criteria that account for not just the number of components but also
the components’ parameters are the information complexity criterion (Bozdogan, 1993), the Laplace
empirical criterion (LEC) (Roberts et al., 1998), and the approximated MML criterion (Oliver et al.,
1996; Figueiredo and Jain, 2002). Further, these criteria are derived using an MML interpretation.
However, as detailed in Section 5.3, these criteria are simplified versions of the generic MML framework,
and are incomplete in objectively addressing the trade-off associated with selecting a suitable mixture
model.

Previous attempts to infer Gaussian mixtures based on these MML-like criteria have been under-
taken by using simplifying assumptions, such as the covariance matrices being diagonal (Oliver et al.,
1996), or by coarsely approximating the probabilities of mixture parameters (Roberts et al., 1998;
Figueiredo and Jain, 2002). In this work, these drawbacks are rectified by proposing a comprehensive
MML formulation with no assumptions on the nature of the component distribution.

Search strategy: To determine the optimal number of mixture components using the aforementioned
criteria (Akaike, 1974; Schwarz, 1978; Oliver et al., 1996; Roberts et al., 1998; Biernacki et al., 2000),
mixtures are inferred for a varying number of components using the EM algorithm, and the mixture
that has the smallest score is treated as the optimal one. As the EM only guarantees convergence
to a local optimum, a few trials are conducted with different starting points in an effort to minimize
the possibility of getting trapped in a local optimum (Krishnan and McLachlan, 1997; McLachlan and
Peel, 2000).

In order to rectify the issues arising from the use of the EM algorithm, methods based on iter-
atively splitting and merging constituent mixture components have been proposed so as to enable
the intermediate mixtures to escape from the local optima. The most notable amongst these are the
split-merge based EM (SMEM) method proposed by Ueda et al. (2000) and component-deletion based
unsupervised learning approach proposed by Figueiredo and Jain (2002). However, as explained in
Section 5.3, these strategies have limited utility.

In this work, we propose a search method that selectively splits, deletes, or merges components
depending on improvements to the MML scoring criterion. The operations, combined with the EM
steps, result in a sensible redistribution of data between the mixture components. As an example, a
component may be split into two children, and at a later stage, one of the children may be merged
with another component. Our proposed method starts with a one-component mixture and alters the
number of components in the subsequent iterations. This avoids the overhead of dealing with a large
number of components unless required.

The rest of the chapter is organized as follows: Section 5.2 outlines the procedure to estimate
the mixture parameters using the EM algorithm. Section 5.3 details the different strategies that are
traditionally employed in determining the optimal number of mixture components. These methods
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provide varied formulations to assess the mixture components and their ability to explain the data.
Methods using the MML criterion have been proved to be effective in achieving a reliable balance
between these conflicting aims (Wallace and Boulton, 1968; Oliver et al., 1996; Roberts et al., 1998;
Figueiredo and Jain, 2002). This has motivated the use of MML-based inference in mixture modelling
of probability distributions in this chapter. To this end, we propose a general purpose mixture mod-
elling approach in Section 5.4. The method has been employed in the context of mixture modelling
using multivariate Gaussian distributions. Section 5.5 compares the proposed methodology against the
widely used method of Figueiredo and Jain (2002), and presents an analysis of the performance of our
search method when modelling simulated and real-world data using multivariate Gaussian mixtures.

5.2 Parameter estimation of mixtures

Mixture modelling involves representing an observed distribution of data as a weighted sum of indi-
vidual probability density functions. Specifically, the problem considered here is to model the mixture
distribution M as defined below

f(x; Φ) =
K∑
j=1

wjfj(x; Θj) (5.1)

where x is a d-dimensional datum, K is the number of mixture components, wj and fj(x; Θj) are the
weight and probability density of the jth component respectively; the weights are positive and sum to
one, and Φ denotes the entire set of mixture parameters {w1, · · · , wK ,Θ1, · · · ,ΘK}.

The standard EM algorithm (Dempster et al., 1977) to estimate Φ involves minimizing the objective
function depending on the type of the estimation method. In the current context, the EM algorithm
is explained to obtain the ML and MML estimates of the mixture parameters.

5.2.1 EM algorithm for ML estimation of mixture parameters

The EM algorithm to obtain the ML estimates is based on minimizing the negative log-likelihood
function of the data. For some observed data D = {x1, . . . ,xN} and a mixture M, the negative
log-likelihood using the mixture distribution is as follows

L(D|Φ) = −
N∑
i=1

log
K∑
j=1

wjfj(xi; Θj) (5.2)

For a fixed K, the ML estimates are then given as Φ̂ML =arg min
Φ

L(D|Φ). Because of the absence

of a closed form solution for Φ̂ML, a gradient descent method is employed where the estimates are
iteratively updated until convergence to some local minimum is achieved (Dempster et al., 1977;
McLachlan and Basford, 1988; Xu and Jordan, 1996; Krishnan and McLachlan, 1997; McLachlan and
Peel, 2000). The EM method consists of two steps:

• E-step: In the EM framework for mixture modelling, it is assumed that each datum xi originates
from one of the mixture components. However, as the component of origin is unknown, the
membership of xi is computed as its conditional expectation given the current value of the
mixture parameters. These partial memberships of the data points to each of the components
are defined using the responsibility matrix

rij =
wjf(xi; Θj)
K∑
k=1

wkf(xi; Θk)

, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ K (5.3)
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where rij denotes the conditional probability of a datum xi belonging to the jth component.
The effective membership associated with the component is given by

nj =
N∑
i=1

rij and
K∑
j=1

nj = N (5.4)

• M-step: Assuming Φ(t) to be the estimates at some iteration t, the expectation of the negative
log-likelihood using Φ(t) and the partial memberships is then minimized which is tantamount
to computing Φ(t+ 1), the updated maximum likelihood estimates for the next iteration (t+ 1).

The weights are updated as wj(t+ 1) =
nj(t)

N
.

The above sequence of steps are repeated until a certain convergence criterion is satisfied. At some
intermediate iteration t, the mixture parameters are updated using the corresponding ML estimates.

In the case of mixtures of Gaussian distributions, where the component parameters are Θj =
(µj ,Cj), the ML updates of the mean (µj) and covariance matrix (Cj) are as follows (see Section 3.5.1)

µ̂j(t+ 1) =
1

nj(t)

N∑
i=1

rij(t)xi and Ĉj(t+ 1) =
1

nj(t)

N∑
i=1

rij(t) (xi − µ̂j(t+ 1)) (xi − µ̂j(t+ 1))T

5.2.2 EM algorithm for MML estimation of mixture parameters

The objective function that needs to be minimized using the EM algorithm corresponds to the total
message length expression. To describe the EM algorithm in the context of MML framework, it is
required to formulate the two-part message length corresponding to the mixture distribution and the
data using the mixture. The computation of the total message length is explained below.

Encoding a mixture model using MML

The encoding of a mixture model using the MML framework requires the encoding of (1) the model
parameters and then (2) the data using the parameters. The statement costs for encoding the mixture
model and the data can be decomposed as follows (Wallace, 2005):

1. Encoding the number of components K: In order to encode the message losslessly, the informa-
tion pertaining to the number of components should be communicated. In the absence of back-
ground knowledge, one would like to model the prior belief in such a way that the probability de-
creases for an increasing number of components. If h(K) ∝ 2−K , then I(K) = K log 2+constant.

This prior reflects that there is a difference of one bit in encoding the numbers K and K + 1.
Alternatively, one could assume a uniform prior over K within some predefined range. The
chosen prior has little effect as its contribution is minimal when compared to the magnitude of
the total message length (Wallace, 2005).

2. Encoding the weights w1, · · · , wK : The component weights are treated as parameters of a multi-
nomial distribution with sample sizes nj ,∀ 1 ≤ j ≤ K, and N being the total sample size
(Equation 5.4). The message length to encode all the weights is then given by the expression
(Boulton and Wallace, 1969)

I(w) =
(K − 1)

2
logN − 1

2

K∑
j=1

logwj − (K − 1)!

3. Encoding each of the component parameters Θj : This has been previously discussed in Sec-

tion 2.4.2, and is given by I(Θj) = − log
h(Θj)√
|F(Θj)|
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4. Encoding the data: Each datum xi can be stated to a finite precision ε.1 If the precision to which
each element of a d-dimensional vector can be stated is ε, then the probability of a datum xi ∈ Rd
is given as Pr(xi) = εdf(xi; Φ) where f(xi; Φ) is the probability density given by Equation 5.1.
Hence, the length of its encoding xi is given by

I(xi) = − log Pr(xi) = −d log ε− log

K∑
j=1

wjfj(xi; Θj)

The entire data D can now be encoded as:

I(D|Φ) = −Nd log ε−
N∑
i=1

log
K∑
j=1

wjfj(xi; Θj)

Thus, the total two-part message length of a K-component mixture is given by

I(Φ,D) = I(Φ) + I(D|Φ)

where I(Φ) = I(K) + I(w) +

− K∑
j=1

log h(Θj) +
1

2

K∑
j=1

log |F(Θj)|

+ constant (5.5)

Note that the constant term includes the lattice quantization constant (resulting from stating all
the model parameters) in a p-dimensional space, where p is equal to the number of free parameters in
the mixture model (see Section 2.4.2).

Estimating the mixture parameters

The MML-based estimates of the parameters of the mixture model are those that minimize Equa-
tion 5.5. To achieve this, we use the EM algorithm (Section 5.2.1), where the parameters are iteratively
updated using their respective MML estimates. The component weights are obtained by differentiat-
ing Equation 5.5 with respect to wj under the constraint

∑K
j=1wj = 1. The derivation of the MML

updates of the weights is shown in Appendix D.1 and are given as

wj(t+ 1) =
nj(t) + 1

2

N + K
2

(5.6)

The parameters of the jth component are updated using the partial memberships, rij(t) and nj(t)
given by Equations 5.3 and 5.4 at an intermediate iteration t of the EM algorithm. In the case
of Gaussian mixtures, the MML updates of the mean and covariance matrix of the jth Gaussian
component, as described in Section 3.5.2, are given by

µ̂j(t+ 1) =
1

nj(t)

N∑
i=1

rij(t)xi and Ĉj(t+ 1) =
1

nj(t)− 1

N∑
i=1

rij(t) (xi − µ̂j(t+ 1)) (xi − µ̂j(t+ 1))T

(5.7)

The EM algorithm terminates when the change in the total message length (improvement rate)
between successive iterations falls below some predefined threshold. The difference between the two
variants of standard EM algorithms discussed above is firstly, the objective function that is being
optimized. In Section 5.2.1, the negative log-likelihood function is minimized. This corresponds to
the I(D|Φ) term in Section 5.2.2. The total message length expression (Equation 5.5) includes addi-
tional terms that correspond to the cost associated with stating the mixture parameters. Secondly,

1Note that ε is a constant value and has no effect on the overall inference process. It is used in order to maintain the
theoretical validity when making the distinction between probability and probability density.
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in the M-step, in Section 5.2.1, the components are updated using their ML estimates, whereas in
Section 5.2.2 the components are updated using their MML estimates.

Limitations of the EM algorithms: The standard EM algorithms outlined above can be used only
when the number of mixture components K is fixed or known a priori. Even when the number
of components are fixed, the EM algorithm has potential pitfalls as the method is sensitive to the
initialization conditions. To overcome this, some reasonable start state for the EM may be determined
by initially clustering the data (Krishnan and McLachlan, 1997; McLachlan and Peel, 2000). Another
strategy is to run the EM a few times and choose the best amongst all the trials. Figueiredo and Jain
(2002) point out that, in the case of Gaussian mixture modelling, the EM algorithm can converge to
the boundary of the parameter space when the corresponding covariance matrix is nearly singular or
when there are few initial members assigned to that component.

5.3 Existing methods to infer the number of components

In a mixture modelling problem, for a completely unsupervised setting, it is required to determine
the number of mixture components. However, inferring the “right” number of mixture components
for unlabelled data is a difficult problem (McLachlan and Peel, 2000). There have been numerous
approaches proposed that attempt to tackle this problem (Akaike, 1974; Schwarz, 1978; Rissanen,
1978; Bozdogan, 1993; Oliver et al., 1996; Roberts et al., 1998; Biernacki et al., 2000; Figueiredo and
Jain, 2002; Baudry and Celeux, 2015).

Given some observed data, there are infinitely many mixtures that one can fit to the data. Any
method that aims to selectively determine the optimal number of components should be able to factor
the cost associated with the mixture parameters. To this end, several methods based on information
theory have been proposed where there is some form of penalty associated with choosing a certain
parameter value (Wallace and Boulton, 1968; Akaike, 1974; Schwarz, 1978; Wallace and Freeman,
1987; Rissanen, 1989). Some of these methods are reviewed here followed by a discussion of the widely
used method of Figueiredo and Jain (2002).

5.3.1 Akaike and Bayesian information criteria

The Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC)
serve as scoring functions to evaluate a mixture and its corresponding goodness-of-fit to the data.

Formulation of the scoring functions: As discussed in Section 2.3.2, the AIC (Akaike, 1974) in its
simplest form adds the number of free parameters p to the negative log-likelihood expression (Equa-
tion 2.7). Some variants of AIC have been suggested (Bozdogan, 1983; Burnham and Anderson, 2002).
However, in each of these variants, all the free parameters have the same penalty constants.

Similar to AIC, BIC (Schwarz, 1978) adds a constant multiple of log
√
N (N being the sample

size), for each free parameter in the model (Equation 2.6). Rissanen (1978) proposed the minimum
description length (MDL) criterion which formally coincides with BIC (Oliver et al., 1996; Figueiredo
and Jain, 2002). The criteria can be interpreted under the MML framework, where the first part of the
message is a constant multiplied by the number of free parameters. AIC and BIC formulations can be
obtained as approximations to the two-part MML formulation governed by Equation 2.8 (Figueiredo
and Jain, 2002).

Search method: To determine the optimal number of mixture components K, the AIC or BIC scores
are computed for mixtures with varying values of K. The mixture model with the smallest score is
selected as per these criteria.



88 CHAPTER 5. MIXTURE MODELLING

Limitations: The formulations of the criteria suggest that the parameter cost associated with adopting
a model depends only on the number of free parameters and not on the parameter values themselves.
In other words, these criteria consider all models of a particular type (of probability distribution) to
have the same statement cost associated with the parameters. For example, a generic d-dimensional
Gaussian distribution has p = d(d + 3)/2 free parameters. All such distributions will have the same
parameter costs regardless of what precise values the means and covariance matrices take.

Furthermore, a d-variate Gaussian mixture with K number of components has p =
Kd(d+ 3)

2
+

(K−1) free parameters. All mixtures with a set number of components have the same cost associated
with their parameters using these criteria. The mixture complexity is therefore treated as independent
of the constituent mixture parameters. In contrast, the MML formulation incorporates the statement
cost of losslessly encoding mixture parameters by calculating their relevant probabilities as discussed
in Section 5.2.2. It has been argued that for tasks such as mixture modelling, where the number of free
parameters potentially grows in proportion to the data, MML is known in theory to give consistent
results as compared to AIC and BIC (Wallace, 1986; Wallace and Dowe, 1999).

5.3.2 Approximate MML criterion (Oliver et al., 1996)

Formulation of the scoring function: For modelling Gaussian mixtures, Oliver et al. (1996) proposed
a MML-based scoring function akin to the one shown in Equation 5.5. Their proposed criterion is
however, only for Gaussian mixtures.

Search method: The search method adopted by Oliver et al. (1996) to infer the number of components
is to run the EM algorithm several times, and choose the K for which the message length is the least
out of the several EM trials. For each K, the standard EM algorithm (Section 5.2.1) was used to
attain local convergence.

Limitations: Oliver et al. (1996) developed their method only for mixtures of Gaussian distributions
with diagonal covariance matrices and fail to provide a general method dealing with full covariance
matrices. Their method cannot be generalized to different kinds of probability distributions. Further,
the search method employed to infer the optimal number of mixture components lacks a rigorous
treatment as they simply vary K and select the one that results in the best EM outcome.

5.3.3 Approximate Bayesian criterion (Roberts et al., 1998)

The approximate Bayesian method to model the Gaussian mixtures was proposed by Roberts et al.
(1998). The method, also referred to as Laplace-empirical criterion (LEC) (McLachlan and Peel,
2000), uses a scoring function derived using Bayesian inference and serves to provide a trade-off
between model complexity and the goodness-of-fit. The parameter estimates of Φ are those that
result in the minimum value of the following scoring function.

− log Pr(D,Φ) = L(D|Φ) +Kd log(2αβσ2
p)− log(K − 1)!−Nd

2
log(2π) +

1

2
log(|H(Φ)|)

where d is the dimensionality of the given data D, L(D|Φ) is the negative log-likelihood, K is the num-
ber of mixture components, α and β are hyperparameters (which are set to 1 in their experiments), σp
is a pre-defined constant or is pre-computed using the entire data, H(Φ) is the Hessian matrix which
is equivalent to the empirical Fisher matrix for the set of component parameters, and p is the number
of free parameters in the model.

Formulation of the scoring function: The scoring function formulated by Roberts et al. (1998) can
be obtained as an approximation to the message length expression in Equation 5.5 by identifying the
following related terms in both equations
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1. I(w) is approximated by − log(K − 1)!

2. For a d-variate Gaussian with mean µ and covariance matrix C, the joint prior h(µ,C) is
calculated as follows:

• Prior on µ: Each of the d parameters of the mean direction are assumed to have uniform

priors in the range (−ασp, ασp), so that the prior density of the mean is h(µ) =
1

(2ασp)d
.

• Prior on C: It is assumed that the prior density is dependent only on the diagonal
elements in C. Each diagonal covariance element is assumed to have a prior in the range

(0, βσp) so that the prior on C becomes h(C) =
1

(βσp)d

The joint prior, is therefore, assumed to be h(µ,C) =
1

(2αβσ2
p)
d
.

Thus, −∑K
j=1 log h(Θj) in Equation 5.5 is approximated by Kd log(2αβσ2

p)

3. 1
2

∑K
j=1 log |F(Θj)| in Equation 5.5 is approximated by 1

2 log |H|

4. The constant is approximated by (p/2) log(2π)

Search method: The search method used to select the optimal number of components in this approach
is similar to the one adopted by Oliver et al. (1996). The optimal number of mixture components
is chosen by running the EM 10 times for every value of K within a given range. The optimal K
is selected as the one for which the best of the 10 trials results in the least value of the scoring function.

Limitations: Although the formulation is an improvement over the previously discussed methods,
there are some limitations due to the assumptions made while proposing the scoring function:

• While computing the prior density of the covariance matrix, the off-diagonal elements are ig-
nored. Real-world data is often correlated and the prior density should reflect this. By ignoring
the off-diagonal elements in the covariance matrix, it is being assumed that the different dimen-
sions of the data points are not correlated.

• The computation of the determinant of the Fisher matrix is approximated by computing the Hes-
sian |H|. It is to be noted that while the Hessian is the observed information (data dependent),
the Fisher information is the expectation of the observed information. The MML formulation re-
quires the use of the expected value because, when MML-based inference (Wallace and Freeman,
1987) is rationalized as a communication framework, the transmitter and receiver can encode
and decode data losslessly only when the expected Fisher is used (see Section 2.4.1).

• The approximated Hessian was derived for Gaussians with diagonal covariances. For Gaussians
with full covariance matrices, the Hessian was approximated by replacing the diagonal elements
with the corresponding eigenvalues of the Hessian matrix. The empirical Fisher computed in
this form does not guarantee the charactersitic invariance property of the classic MML method
(Oliver and Baxter, 1994).

5.3.4 Integrated Complete Likelihood (Biernacki et al., 2000)

The Integrated Complete Likelihood (ICL) criterion was proposed by Biernacki et al. (2000). The
criterion maximizes the complete log-likelihood (CL) given by

CL(D,Φ) = −L(D|Φ)−
N∑
i=1

K∑
j=1

zij log rij
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where L(D|Φ) is the negative log-likelihood of the data, rij is the responsibility term (Equation 5.3),

and zij = 1 if xi arises from component j and zero otherwise. The term
N∑
i=1

K∑
j=1

zij log rij is explained

as the estimated mean entropy.

Formulation of the scoring function: The ICL criterion is then defined as: ICL(D,Φ) = CL(D,Φ)−
p

2
logN,where p is the number of free parameters in the model. As per the above definition, note that

the scoring function has a form similar to that of BIC.

Search method: The search method adopted in conjunction with this scoring function is similar to the
one used by Oliver et al. (1996) and Roberts et al. (1998). The EM algorithm is initiated 20 times for
each value of K with random starting points and the best amongst those is chosen.

Limitations: As the formulation of the ICL scoring function is similar to the previously discussed
information-theoretic criteria such as AIC and BIC, we note that the ICL scoring function penalizes
each free parameter by a constant value and does not account for the actual model parameters. This
restricts the ability of ICL to distinguish between mixture models containing the same number of
components.

5.3.5 Split-Merge EM (Ueda et al., 2000)

While estimating the parameters of a K-component mixture, the traditional EM algorithm (Sec-
tion 5.2.1) can potentially be trapped in a local optimum. The split-merge based EM (SMEM)
method was proposed by Ueda et al. (2000) to improve on the EM solution, by perturbing the mixture
components through a deterministic series of split and merge operations applied on the components.

Search method: Given a mixture with K components that is optimized using the EM algorithm, the
SMEM method selects the top three candidates, merges two of them, and splits the other into two,
thus, leaving the effective number of components unchanged. The potential candidates are chosen
depending on the improvement to the complete data log-likelihood function (used to formulate the
ICL criterion).

Limitations: The SMEM algorithm does not facilitate an increase or decrease in the mixture size.
Once the three top candidates in a parent mixture that improve the ICL value are determined, the
parent mixture is updated, and the algorithm is repeated with the updated parent. The authors note
that such a heuristic doesn’t necessarily guarantee the best selection of candidates for perturbing the
parent mixture. They keep trying until they find the set of three candidates (a maximum of 5 random
trials is used in their experiments) It is therefore, not exhaustive, as there could be a combination of
three components that could be potentially left out.

5.3.6 Unsupervised Learning of Finite Mixtures (Figueiredo and Jain, 2002)

The mixture modelling method due to Figueiredo and Jain (2002) uses a simplified MML-like criterion
to formulate the scoring function. This formulation can be intrepreted as a two-part message for
encoding the model parameters and the observed data as follows

I(D,Φ) =
Np

2

K∑
j=1

log

(
Nwj
12

)
+
K

2
log

N

12
+
K(Np + 1)

2︸ ︷︷ ︸
first part

+ L(D|Φ)︸ ︷︷ ︸
second part

(5.8)
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where Np is the number of free parameters per component and wj is the component weight.

Formulation of the scoring function: This scoring function is derived from Equation 5.5 by assum-
ing the prior density of the component parameters to be a Jeffreys prior. According to Jeffreys
(1946), if Θj is the vector of parameters describing the jth component, then the prior density
h(Θj) ∝

√
|F(Θj)|. Applying this prior to the mixture modelling problem, the prior for weights

would result in h(w1, . . . , wK) ∝ (w1 . . . wK)−1/2. These assumptions are used in the encoding of the
parameters which correspond to the first part of the message.

Limitations: We note that the scoring function is consistent with the MML scheme of encoding
parameters and the data using those parameters. However, the formulation can be improved by
amending the assumptions as detailed in our approach in Section 3.5.2, for Gaussian mixtures. Further,
the assumptions made in Figueiredo and Jain (2002) have the following side effects

• The value of − log
h(Θj)√
|F(Θj)|

gives the cost of encoding the component parameters. By assuming

h(Θj) ∝
√
|F(Θj)|, the message length associated with using any vector of parameters Θj is

essentially treated the same. To avoid this, the use of independent uniform priors over non-
informative Jeffreys’s priors was advocated previously (Oliver et al., 1996; Lee, 1997; Roberts
et al., 1998).

The use of Jeffreys prior offers certain advantages, for example, not having to compute the Fisher
information (Jeffreys, 1946). However, this is important and cannot be ignored as it dictates the
precision of encoding the parameter vector. Wallace (2005) state that “Jeffreys, while noting the
interesting properties of the prior formulation did not advocate its use as a genuine expression
of prior knowledge.”

Therefore, by making this assumption, Figueiredo and Jain (2002) avoid the difficulty associated
with explicitly computing the Fisher information. As a result, for encoding the parameters of
the entire mixture, only the cost associated with encoding the component weights is considered.

• The code length to state each Θj is, therefore, greatly simplified as (Np/2) log(Nwj) (notice
the sole dependence on weight wj). Figueiredo and Jain (2002) interpret this as being similar
to an MDL/BIC formulation because Nwj gives the expected number of data points generated
by the jth component. This is equivalent to the BIC criterion discussed earlier. We note that
MDL/BIC are highly simplified versions of MML formulation and therefore, Equation 5.8 does
not capture the entire essence of complexity and goodness-of-fit accurately.

Search method: The method begins by assuming a large number of components and updates the
weights iteratively in the EM steps as

wj =
max

{
0, nj − Np

2

}
∑K

j=1 max
{

0, nj − Np
2

} (5.9)

where nj is the effective membership of data points in jth component (Equation 5.4). A component
is eliminated when its weight becomes zero and, consequently, the number of mixture components
decreases. We note that the search method proposed by Figueiredo and Jain (2002) using the MML
criterion is an improvement over the methods they compare against.

Limitations: The search method of Figueiredo and Jain (2002) has the following associated problems

• The method updates the weights as given by Equation 5.9. During any iteration, if the amount
of data allocated to a component is less than Np/2, its weight is updated as zero and this
component is ignored in subsequent iterations. This imposes a lower bound on the amount of
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data that can be assigned to each component. As an example, for a 10-dimensional Gaussian
mixture, the number of free parameters per component is Np = 65 and, hence, the lower bound
is 32.5. Thus, in this example, if a component has ∼ 30 data points, the mixture size is reduced
and these data are assigned to some other component(s). Consider a scenario where there are
50 observed 10 dimensional data points originally generated by a mixture with two components
with equal mixing proportions. The method of Figueiredo and Jain (2002) would always infer
that there is only one component regardless of the separation between the two components. This
is clearly a wrong inference (see Section 5.5.4 for the relevant experiments).

• Once a component is discarded, the mixture size decreases by one, and it cannot be recovered.
Because the memberships nj are updated iteratively using an EM algorithm and because EM
might not always lead to global optimum, it is conceivable that the updated values need not
always be optimal. This might lead to situations where a component is deleted owing to its low
prominence. There is no provision to increase the mixture size in the subsequent stages of the
algorithm to account for such behaviour.

• The method assumes a large number of initial components in an attempt to be robust with
respect to EM initialization. However, this places a significant overhead on the computation due
to the need to handle several components.

5.3.7 MML-Snob mixture modelling (Wallace and Boulton, 1968)

The Snob program is an MML-based mixture modelling software for unsupervised learning (Wallace
and Boulton, 1968; Boulton and Wallace, 1970). The method progressively modifies the number of
mixture components by a series of reclassifying, splitting, merging, and swapping operations on the
components. Each operation results in a modified mixture that is evaluated based on the reduction
to the total message length.

There have been several versions of Snob since Boulton and Wallace (1970). The initial implemen-
tation of Snob dealt with complete assignments of data to the mixture components. Wallace (1986)
suggested improvements to allow for partial assignments. The common theme across the different
revisions of Snob has been the assumption that all attributes in the data are independent within
each component (Jorgensen and McLachlan, 2008). This assumption has been used in modelling mix-
tures of multi-state, Poisson, von Mises circular and Gaussian distributions (Wallace and Dowe, 2000).

Limitations: The independent assumption of the data attributes limits the use of Snob when the data
has correlated attributes. As an example, for mixture modelling using multivariate Gaussian mixtures,
this assumption only facilitates the use of Gaussian distributions with diagonal covariance matrices.

Further, as noted by Jorgensen and McLachlan (2008), there are limited extensions of the method-
ology to incorporate multivariate distributions of different types. Agusta and Dowe (2002) developed
an extension for mixtures of multivariate Gaussian distributions. We note that the although the
strategies employed in changing the number of mixture components are generalizable, however, the
implementation of Snob inhibits its extension to model multivariate data whose attributes are corre-
lated.

Summary: We observe that while all these methods (and many more) work well within their defined
scope, they are incomplete in achieving the true objective, that is, to rigorously score models and their
ability to fit the data. The methods discussed above can be seen as different approximations to the
MML framework. They adopted various simplifying assumptions and approximations. To avoid such
limitations, we developed a classic MML formulation, giving the complete message length formulations
for the various probability distributions.

Secondly, in most of these methods, the search for the optimal number of mixture components is
achieved by selecting the mixture that results in the best EM outcome out of many trials (Akaike, 1974;
Schwarz, 1978; Oliver et al., 1996; Roberts et al., 1998; Biernacki et al., 2000). This is not an elegant



5.4. PROPOSED SEARCH METHOD TO INFER AN OPTIMAL MIXTURE 93

solution and Figueiredo and Jain (2002) proposed a search heuristic which integrates estimation and
model selection. A comparative study of these methods is presented in McLachlan and Peel (2000).
Their analysis suggested the superior performance of ICL (Biernacki et al., 2000) and LEC (Roberts
et al., 1998). Later, Figueiredo and Jain (2002) demonstrated that their proposed method outperforms
the contemporary methods based on ICL and LEC and is regarded as the current state of the art.
The proposed search method is, therefore, compared against that of Figueiredo and Jain (2002) to
demonstrate its effectiveness.

With this background, we formulate an alternate search heuristic to infer the optimal number of
mixture components that aims to address the above limitations.

5.4 Proposed search method to infer an optimal mixture

The space of candidate mixture models to explain the given data is infinitely large. As per the
MML criterion (Equation 5.5), the goal is to search for the mixture that has the least total message
length. If the number of mixture components are fixed, then the EM algorithm (Section 5.2.2) can be
used to estimate the mixture parameters, namely the component weights and the parameters of each
component. However, here, it is required to search for the optimal number of mixture components
along with the corresponding mixture parameters.

The proposed search method extends the MML-based Snob program (Wallace and Boulton, 1968;
Wallace, 1986; Jorgensen and McLachlan, 2008) for unsupervised learning. We define three operations,
namely split, delete, and merge that can be applied to any component in the mixture.

5.4.1 The search algorithm

The pseudocode of the proposed method is presented in Algorithm 1. The basic idea behind the
search strategy is to perturb a mixture from its current sub-optimal state to obtain a new state (if the
perturbed mixture results in a smaller message length).

In general, if a (current) mixture has K components, it is perturbed using a series of Split, Delete,
and Merge operations to check for improvement. Each component is split and the new (K + 1)-
component mixture is re-estimated. If there is an improvement (that is, if there is a decrease in
message length with respect to the current mixture), the new (K + 1)-component mixture is retained.
There are K splits possible and the one that results in the greatest improvement is recorded (see
lines 5 - 7 in Algorithm 1). A component is first split into two sub-components (children) which
are locally optimized by the EM algorithm on the data that belongs to that sole component. The
child components are then integrated with the others and the mixture is then optimized to generate a
(K + 1)-component mixture. The reason being it is better to start from some already optimized state
to reach an improved state, rather than use random initial values in the EM algorithm.

Similarly, each of the components is then deleted, one after the other, and the (K − 1)-component
mixture is compared against the current mixture. There are K possible deletions and the best amongst
these is recorded (see lines 8 - 11 in Algorithm 1). Finally, the components in the current mixture
are merged with their closest matches (determined by calculating the KL-divergence) and each of the
resultant (K − 1)-component mixtures are evaluated against the K component mixture. The best
among these merged mixtures is then retained (see lines 12 - 15 in Algorithm 1).

The algorithm starts by assuming a one-component mixture. This component is split into two
children which are locally optimized. If the split results in a better model, it is retained. For any
given K-component mixture, there might be improvement due to splitting, deleting and/or merging
its components. We select the perturbation that best improves the current mixture. This process
is repeated until there is no further improvement possible. The notion of best or improved mixture
is based on the amount of reduction of message length that the perturbed mixture provides. In the
current state, the observed data have partial memberships in each of the K components. Before the
execution of each operation, these memberships need to be adjusted and EM steps are subsequently
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Algorithm 1: Search for an optimal mixture model

1 current← one-component-mixture
2 while true do
3 components← current mixture components
4 K ← number of components
5 for i← 1 to K do // exhaustively split all components

6 splits[i]← Split(current, components[i])
7 BestSplit← best(splits) // remember the best split

8 if K > 1 then
9 for i← 1 to K do // exhaustively delete all components

10 deletes[i]← Delete(current, components[i])
11 BestDelete← best(deletes) // remember the best deletion

12 for i← 1 to K do // exhaustively merge all components

13 j ← closest-component(i)
14 merges[i]←Merge(current, i, j)

15 BestMerge← best(merges) // remember the best merge

/* select the best perturbation */

16 BestPerturbation← best(BestSplit, BestDelete,BestMerge)
∆I ← message length(BestPerturbation)−message length(current)

17 if ∆I < 0 // check for improvement

18 then
19 current← BestPerturbation
20 loop from line 2

21 else
22 stop

23 return current

carried out to achieve an optimum with a different number of components. Below, each of these
operations is examined in detail including how the memberships are adjusted after each operation.

5.4.2 Strategic operations employed to determine an optimal mixture

Let R = [rij ] be the N×K responsibility (membership) matrix and wj be the weight of jth component
in mixture M.

Split operation (Line 6 in Algorithm 1): Assume a component with index α ∈ {1,K} and
weight wα in the current mixture M is being split to generate two child components. The goal is to
find two distinct clusters amongst the data associated with component α. It is to be noted that the
data have fractional memberships in component α. The EM is therefore, carried out within component
α assuming a two-component sub-mixture with the data weighted as per their current memberships
riα. The remaining (K − 1) components are untouched. A sequence of EM steps are carried out
to optimize the two-component sub-mixture. The initial state and the subsequent updates in the
Maximization-step of the EM algorithm are described below.

Parameter initialization of the two-component sub-mixture: The goal is to identify two distinct clusters
within component α. For example, for Gaussian mixtures, to provide a reasonable starting point, we
can compute the direction of maximum variance of the parent component and locate two points that
are one standard deviation away on either side of its mean (along this direction). These points serve
as the initial means for the two children generated due to splitting the parent component. Selecting
the initial means in this manner ensures they are reasonably apart from each other and serves as a
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good starting point for optimizing the two-component sub-mixture. The memberships are initialized
by allocating the data points to the closest of the two means. Once the means and the memberships
are initialized, the covariance matrices of the two child components are computed.

There are conceivably several variations to how the two-component sub-mixture can be initialized.
These include random initialization, selecting two data points as the initial component means, and
many others. However, the reason for selecting the direction of maximum variance is to utilize the
already available characteristic of the data, that is, the distribution within component α.

Once the parameters of the sub-mixture are initialized, an EM algorithm is carried out (just for the
sub-mixture) with the following Maximization-step updates. Let Rc = [rcik] be the N×2 responsibility

matrix for the two-component sub-mixture. For k ∈ {1, 2}, let n
(k)
α be the effective memberships of

data belonging to the two child components, let w
(k)
α be the weights of the child components within

the sub-mixture, and let Θ
(k)
α be the parameters describing the child components. The effective

memberships are updated as given below

n(k)
α =

N∑
i=1

rcik and n(1)
α + n(2)

α = N

As the sub-mixture comprises of two child components, substitute K = 2 in Equation 5.6 to obtain
the updates for the weights. These are given as

w(k)
α =

n
(k)
α + 1

2

N + 1
and w(1)

α + w(2)
α = 1

For Gaussian mixtures, the component parameters Θ
(k)
α = (µ̂

(k)
α , Ĉ

(k)
α ) are updated as

µ̂(k)
α =

N∑
i=1

riαr
c
ikxi

N∑
i=1

riαr
c
ik

and Ĉ(k)
α =

N∑
i=1

riαr
c
ik(xi − µ̂(k)

α )(xi − µ̂(k)
α )T

N∑
i=1

riαr
c
ik − 1

(5.10)

The difference between the EM updates in Equations 5.7 and 5.10 is the presence of the coefficient
riαr

c
ik with each xi. Since the sub-mixture is considered, the original responsibility riα is multiplied

by the responsibility within the sub-mixture rcik to quantify the influence of datum xi to each of the
child components.

After the sub-mixture is locally optimized, it is integrated with the unperturbed (K−1) components
of M to result in a (K + 1)-component mixture M′. An EM is finally carried out on the combined
(K + 1) components to estimate the parameters of M′ and, thus, result in an optimized (K + 1)-
component mixture.

EM initialization for M′: Usually, the EM is started by a random initialization of the members.
However, because the two-component sub-mixture is now optimal and the (K − 1) components in M
are also in an optimal state, we exploit this situation to initialize the EM (for M′) with a reasonable
starting point. As mentioned above, the component with index α and weight wα is split. Upon
integration, the (child) components that replaced component α will now correspond to indices α and
α+ 1 in the new mixture M′. Let R′ = [r′ij ] ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ K + 1 be the responsibility matrix
for the new mixture M′ and let w′j be the component weights in M′.

• Component weights: The weights are initialized as

w′j = wj if j < α and w′j = wj−1 if j > α+ 1

w′α = wαw
(1)
α and w′α+1 = wαw

(2)
α
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• Memberships: The responsibility matrix R′ is initialized for all data xi ∀1 ≤ i ≤ N as

r′ij = rij if j < α and r′ij = ri (j−1) if j > α+ 1

r′iα = riαr
c
i1 and r′i α+1 = riαr

c
i2

n′j =

N∑
i=1

r′ij ∀ 1 ≤ j ≤ K + 1

where n′j are the effective memberships of the components in M′ .

With these starting points, the parameters of M′ are estimated using the traditional EM algo-
rithm with updates in the Maximization-step given by Equations 5.6 and 5.7. The EM results in local
convergence of the (K+1)-component mixture. If the resultant message length of encoding data using
M′ is lower than that due to M, that means the perturbation of M due to splitting component α
resulted in a new mixture M′ that compresses the data better and, hence, is a better mixture model
to explain the data.

Delete operation (Line 10 in Algorithm 1): The goal here is to remove a component from
the current mixture and check whether it results in a better mixture model to explain the observed
data. Assume the component with index α and weight wα is to be deleted from M to generate a
(K − 1)-component mixture M′. Once deleted, the data memberships of the component need to be
redistributed between the remaining components. The redistribution of data results in a good starting
point to employ the EM algorithm to estimate the parameters of M′.

EM initialization for M′: Let R′ = [r′ij ] be the N × (K− 1) responsibility matrix for the new mixture

M′ and let w′j be the weight of the jth component in M′.
• Component weights: The weights are initialized as

w′j =
wj

1− wα
if j < α and w′j =

wj+1

1− wα
if j ≥ α

It is to be noted that wα 6= 1 because the MML update expression in the M-step for the
component weights always ensures non-zero weights during every iteration of the EM algorithm
(see Equation 5.6).

• Memberships: The responsibility matrix R′ is initialized for all data xi ∀ 1 ≤ i ≤ N as

r′ij =
rij

1− riα
if j < α and r′ij =

ri (j+1)

1− riα
if j ≥ α

n′j =
N∑
i=1

r′ij ∀ 1 ≤ j ≤ K − 1

where n′j is the effective membership of the data in component j in M′. It is possible for
a datum xi to have complete membership in component α (that is, riα = 1), in which case,
its membership is equally distributed among the other (K − 1) components (that is, r′ij =

1

K − 1
, ∀ j ∈ {1,K − 1}).

With these readjusted weights and memberships, and the constituent (K − 1) components, the tra-
ditional EM algorithm is used to estimate the parameters of the new mixture M′. If the resultant
message length of encoding data usingM′ is lower than that due toM, that means the perturbation
of M due to deleting component α results in a new mixture M′ with improved explanatory power of
the given data and, hence, is an improvement over the current mixture.
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Merge operation (Line 14 in Algorithm 1): The goal is to join a pair of components in M
and determine whether the resulting (K − 1)-component mixture M′ is any better than the current
mixture M. One strategy to identify an improved mixture model would be to consider merging all
possible pairs of components and choose the one which results in the greatest improvement. This
would, however, lead to a runtime complexity of O(K2), which could be significant for large values of
K. Another strategy is to consider merging components which are “close” to each other.

For a given component, its closest component is identified by computing the Kullback-Leibler
(KL) distance with all others and selecting the one with the least value. This would result in a linear
runtime complexity of O(K) as computation of KL-divergence is a constant time operation. For every
component in M, its closest match is identified and they are merged to obtain a (K − 1)-component
mixture M′. Merging the pair involves reassigning the component weights and the memberships. An
EM algorithm is then employed to optimize M′.

Assume components with indices α and β are merged. Let their weights be wα and wβ; and their
responsibility terms be riα and riβ, 1 ≤ i ≤ N respectively. The component that is formed by merging
the pair is determined first. It is then integrated with the (K − 2) remaining components of M to
produce a (K − 1)-component mixture M′.

EM initialization for M′: Let w(m) and r
(m)
i be the weight and responsibility vector of the merged

component m, respectively. They are given as

w(m) = wα + wβ and r
(m)
i = riα + riβ, 1 ≤ i ≤ N

In the case of Gaussian mixtures, the parameters Θ(m) = (µ̂(m), Ĉ(m)) of this merged component are
estimated as

µ̂(m) =

N∑
i=1

r
(m)
i xi

N∑
i=1

r
(m)
i

and Ĉ(m) =

N∑
i=1

r
(m)
i (xi − µ̂(m))(xi − µ̂(m))T

N∑
i=1

r
(m)
i − 1

The merged component m with weight w(m), responsibility vector r
(m)
i , and parameters Θ(m) is

then integrated with the (K−2) components. The merged component and its associated memberships
along with the (K − 2) other components serve as the starting point for optimizing the new mixture
M′. IfM′ results in a lower message length compared toM, it means the perturbation ofM because
of merging the pair of components resulted in an improvement to the current mixture.

5.4.3 Illustrative example of the search procedure
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Figure 5.1: Original mixture

The proposed search and inference of the mixture components
is explained through the following example that was also consid-
ered by Figueiredo and Jain (2002). Consider a bivariate Gaus-
sian mixture shown in Figure 5.1 (the data points are coloured
based on their density values). The mixture has three compo-
nents with equal weights of 1/3 each and their means at (-2,0),
(0,0), and (2,0). The covariance matrices of the three compo-
nents are the same and are equal to diag{2, 0.2}. We simulate
900 data points from this mixture (as done by Figueiredo and
Jain (2002)) and employ the proposed search strategy. The pro-
gression of the search method using various operations is detailed
below.
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Search for the optimal mixture model

The method begins by inferring a one-component mixture P1 (Figure 5.2a). It then splits the com-
ponent (described in Split step of Section 5.4.2) and checks whether there is an improvement in
explanation. The red ellipse in Figure 5.2(b) depicts the component being split. The direction of
maximum variance (dotted black line) is first identified, and the means (shown by black dots at the
end of the dotted line) are initialized. An EM algorithm is then used to optimize the two children.
This results in a mixture P2 shown in Figure 5.2(c). Since the new mixture has a lower message length,
the current is updated as P2.
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Figure 5.2: (a) P1: the one-component mixture after the first iteration (message length I = 22793
bits) (b) Red colour denotes the component being split. The dotted line is the direction of maxi-
mum variance. The black dots represent the initial means of the two-component sub-mixture (c) P2:
optimized mixture post-EM phase (I = 22673 bits) results in an improvement.

In the second iteration, each component in P2 is iteratively split, deleted, and merged. Fig-
ure 5.3(a)-(c) shows the splitting of the first component (red). On splitting, the new mixture P3

results in a lower message length. Deletion of the first component is shown in Figure 5.3(d)-(f). Be-
fore merging the first component, its closest component is identified (with the least KL divergence)
(see Figure 5.3g). Deletion and merging operations, in this case, do not result in an improvement.
These two operations have different intermediate EM initializations, shown in Figures 5.3(e) and (h)
but result in the same optimized one-component mixture. The same set of operations are performed
on the second component in P2. In this particular case, splitting results in an improved mixture (same
as P3).

The new parent is updated as P3 and the series of split, delete, and merge operations are carried
out on all components in P3. Figure 5.4 shows these operations on the first component. We see that
splitting the first component in P3 results in P4 (see Figure 5.4c). However, P4 is not an improvement
over P3 as seen by the message lengths and is, therfore, discarded. Similarly, deletion and merging of
the components do not yield improvements to P3. The operations are carried out on the remaining
two components in P3 (not shown in the figure) too. These perturbations do not produce improved
mixtures in terms of the total message length. Since the third iteration does not result in any further
improvement, the search terminates and the parent P3 is considered to be the best mixture.

In different stages of the search method, there are different intermediate mixtures. The EM
algorithm is a gradient descent technique and it can get trapped in a local optimum. By employing
the suggested search, we are exhaustively considering the possible options, and aiming to reduce the
possibility of the EM getting stuck in a local optimum. The proposed method infers a mixture by
balancing the tradeoff due to model complexity and the fit to the data. This is particularly useful
when there is no prior knowledge pertaining to the nature of the data. In such a case, this method
provides an objective way to infer a mixture with suitable components that best explains the data
through lossless compression.
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(c) P3: post-EM (I = 22460 bits)
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Figure 5.3: Second iteration (perturbations of the first component in P2): (a)-(c) Splitting results in
an improved mixture P3 (d)-(f) Deleting – no improvement (g)-(i) Merging the two components – no
improvement

Progression of the two-part message length during the search phase

The search method infers three components and terminates. In order to demonstrate that the inferred
number of components is the optimum number, we infer mixtures with increasing number of com-
ponents (until it reaches K = 15 as an example) and plot their resultant message lengths. For each
K > 3, the standard EM algorithm (Section 5.2.2) is employed to infer the mixture parameters.

Figure 5.5 shows the total message lengths to which the EM algorithm converges for varying
number of components M . As expected, the total message length (green curve) drastically decreases
initially until K = 3 components are inferred. Starting from K = 4, the total message length gradually
increases, clearly suggesting that the inferred models are over-fitting the data with increasing statement
cost to encode the additional parameters of these (more complex) models.

The reason for the initial decrease and subsequent increase in the total message length is further
elaborated. As per the MML criterion, the message length comprises of two parts – statement cost
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(c) P4: post-EM (I = 22474 bits)
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Figure 5.4: Third iteration: Operations involving the first component (a)-(c) denote the splitting
process, (d)-(f) denote the deletion process, and (g)-(i) shows the merging of the first component with
its closest component.

for the parameters and the cost for stating the data using those parameters. The model complexity
(which corresponds to the mixture parameters) increases with increasing K. Therefore, the first part
of the message to encode parameters increases with an increase in the number of parameters. This
behaviour is illustrated by the red curve in Figure 5.5. The first part message lengths are shown in
red on the right side Y-axis in the figure.

As the mixture model becomes increasingly more complex, the error of fitting the data decreases.
This corresponds to the second part of the message in the MML encoding framework. This behaviour
is consistent with what is observed in Figure 5.5 (blue curve). There is a sharp fall until K = 3; then
onwards increasing the model complexity does not lower the error significantly. The error saturates
and there is minimal gain with regards to encoding the data (the case of overfitting). However, the
model complexity dominates after K = 3. The optimal trade-off is achieved when K = 3. We note that
for a fixed number of mixture components, the EM algorithm for the MML measure is monotonically
decreasing. However, while searching for the number of components using our proposed split, delete,
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Figure 5.5: Variation of the individual parts of the total message length with increasing number of
components (note the two Y-axes have different scales – the first part follows the right side Y-axis;
the second part and total message lengths follow the left side Y-axis)

and merge operations, MML continues to decrease until some optimum is found and then steadily
increases as illustrated through this example.

5.5 Experimental analyses of multivariate Gaussian mixtures

The search and inference methodology proposed here is compared against the widely cited method of
Figueiredo and Jain (2002) using the Gaussian mixtures. The authors tested the performance of their
method against that of Bayesian Information Criterion (BIC), the Integrated Complete Likelihood
(ICL), and the approximate Bayesian (LEC) methods (discussed in Section 5.3). It was shown that
the method of FJ2 was superior than BIC, ICL and LEC (using Gaussian mixtures). In this section,
a series of experiments are conducted to demonstrate that the proposed approach to infer mixtures
fares better when compared with the method of FJ.

The experimental setup is as follows. We generate a random sample of data from a given Gaussian
mixture Mt (true distribution). On this random sample, we use our proposed search method to infer
the mixture. This is repeated 50 times and the performance of the proposed method is compared
against that of FJ. The analyses include comparison of the number of inferred components as well as
the quality of the inferred mixtures.

5.5.1 Methodologies used to compare the inferred mixtures

Comparing message lengths: The difference in message lengths gives the log-odds posterior ratio of
any two mixtures (Equation 2.5). Given some observed data, and any two mixtures, one can determine
which of the two best explains the data. The proposed methodology uses the scoring function (IMML)
defined in Equation 5.5. As elaborated in Section 5.3.6, FJ use an approximated MML-like scoring
function (IFJ) given by Equation 5.8.

2From here on, we will use the short form FJ to refer to Figueiredo and Jain (2002)
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Both the proposed and FJ’s search methods are employed to infer mixtures of the same data. Let
these inferred mixtures be M∗ and MFJ , respectively. We compute the following two quantities

∆IMML = IMML(MFJ)− IMML(M∗) and ∆IFJ = IFJ(MFJ)− IFJ(M∗) (5.11)

The two different scoring functions are used to compute the differences in message lengths of the
resulting mixtures MFJ and M∗. Since the search method used to obtain M∗ optimizes the scoring
function IMML, it is expected that IMML(M∗) < IMML(MFJ) and consequently ∆IMML > 0. This
implies that the proposed method is performing better using our defined objective function. However,
if IFJ(M∗) < IFJ(MFJ), this indicates that our inferred mixture M∗ results in a lower value of the
scoring function that is defined by FJ. Such an evaluation not only demonstrates the superior perfor-
mance of the proposed search (leading toM∗) using our defined scoring function but also proves it is
better compared to the one defined by FJ.

Kullback Leibler (KL) distance: In addition to using the message length based evaluation criterion,
the mixtures are also compared using the KL distance (Section 2.5.2) with respect to the original
mixture distribution. For a mixture probability distribution, there is no analytical form to compute
the metric. However, one can calculate its empirical value (which asymptotically converges to the
actual KL distance). In experiments relating to mixture simulations, we know the true mixture Mt

from which the data {xi}, 1 ≤ i ≤ N is being sampled. The KL distance, denoted by DKL(Mt ||M),
is then approximated by the following expression

DKL(Mt ||M) = EMt

[
log

Pr(x,Mt)

Pr(x,M)

]
≈ 1

N

N∑
i=1

log
Pr(xi,Mt)

Pr(xi,M)
(5.12)

where M is an inferred mixture distribution (M∗ or MFJ) whose closeness to the true mixture Mt

is to be determined.

5.5.2 Bivariate Gaussian mixture simulation

An experiment conducted by FJ was to randomly generate N = 800 data points from a two-component
(with equal mixing proportions) bivariate mixture Mt whose means are at µ1 = (0, 0)T and µ2 =
(δ, 0)T , have equal covariance matrices: C1 = C2 = I (the identity matrix), and compare the number
of inferred components. The same experiment is repeated here and the results are compared with
those of FJ. The separation δ between the means is gradually increased within the range of 1.8 to 2.6
(same as FJ) and the percentage of the correct selections (over 50 simulations) as determined by the
two search methods is analyzed.

As expected, an increase in the separation between the component means leads to an increase
in the number of correctly inferred components. In this case, for the mixtures inferred using both
approaches, the differences in message lengths ∆IMML and ∆IFJ are close to zero. The KL distances
for the inferred mixtures are also the same. Therefore, for this experimental setup, the performance
of both methods is roughly similar.

As the difference between the two search methods is not apparent from this experiment, the
behaviour of the methods was investigated for smaller samples. Hence, the experiment is repeated
with N = 100. In this case, our search method results in a mean value (of the inferred components)
close to 1 for different values of δ (see Figure 5.6a). The average value of the number of inferred
components using FJ’s method fluctuates between 2 and 3. However, there is significant variance in
the number of inferred components as can be seen in Figure 5.6(a). There are many instances where
the number of inferred components is more than 3. The results indicate that the FJ’s method is
overfitting the data.

The correctness of the mixtures inferred by the two search methods is further evaluated by compar-
isons using the message length formulations and KL distance values. Figure 5.6(b) shows the boxplot
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Figure 5.6: Bivariate mixture simulation (N = 100 and over 50 simulations). (a) Box-whisker plot
showing the variability in the number of inferred components (b) Difference in message lengths com-
puted using the two different scoring functions (see Equation 5.11) (c) KL distance of inferred mixtures
when δ = 2.0 (d) KL distance for all values of δ ∈ {1.8, . . . , 2.6}.

of the difference in message lengths of the mixtures M∗ inferred using the proposed search method
and the mixtures MFJ inferred using FJ’s method. It is observed that ∆IMML > 0 across all values
of δ for the 50 simulations.

As per Equation 5.11, we have IMML(M∗) < IMML(MFJ). This implies that M∗ has a lower
message length compared to MFJ when evaluated using our scoring function. Similarly, we have
∆IFJ < 0, that is, IFJ(M∗) > IFJ(MFJ). This implies that MFJ has a lower message length
compared to M∗ when evaluated using FJ’s scoring function. These results are not surprising as M∗
andMFJ are obtained using search methods that optimize the respective MML and MML-like scoring
functions.

The KL distances of M∗ and MFJ are then analyzed with respect to the true bivariate mixture
Mt over all 50 simulations and across all values of δ. Ideally, the KL distance should be close to zero.
Figure 5.6(c) shows the KL distance of the mixtures inferred using the two search methods with respect
toMt when the separation is δ = 2.0. The proposed search method infers mixtures whose KL distance
(denoted by red lines) is close to zero, and more importantly less than the KL distance of mixtures
inferred by FJ’s search method (denoted by blue lines). The same type of behaviour is noticed with
other values of δ. Figure 5.6(d) compares the KL distance for varying values of δ. The median value
of the KL distance due to the proposed search method is close to zero with not much variation. FJ’s
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Figure 5.7: 10-dimensional mixture simulations (a) Percentage of correct selections with varying δ for
a fixed sample size of N = 800 (b) Average number of inferred mixture components with different
sample sizes and δ = 1.20 between component means. (c) Difference in message lengths of inferred
mixtures (d) Box-whisker plot of KL distance of inferred mixtures

search method always results in mixtures whose KL distance is higher. The results suggest that, in
this case, mixturesMFJ inferred by employing the FJ’s search method deviate significantly from the
true mixture distribution Mt. This can also be explained by the fact that there is a wide spectrum
of the number of inferred components (see Figure 5.6a). This suggests that the MML-like scoring
function is failing in its objective to control the trade-off between complexity and goodness-of-fit and,
hence, is selecting more complex mixture models than necessary to describe the data.

5.5.3 Simulation of 10-dimensional mixtures

Along the same lines as the previous setup, FJ conducted another experiment for a 10-variate two-
component mixture Mt with equal mixing proportions. The means are at µ1 = (0, . . . , 0)T and
µ2 = (δ, . . . , δ)T so that the Euclidean distance between them is δ

√
10. The covariances of the two

components are C1 = C2 = I. Random samples of size N = 800 were generated from the mixture
and the number of inferred components are plotted. The experiment is repeated for different values
of δ and over 50 simulations.

Figure 5.7(a) shows the number of inferred components using the two search methods. At lower
values of δ, the components are close to each other and, hence, it is relatively more difficult to correctly
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infer the true number of components. It is observed that our proposed method clearly performs better
than that of Figueiredo and Jain (2002) across all values of δ. The quality of these inferred mixtures
is also compared by calculating the difference in message lengths using the two scoring functions,
and also using the KL distance with respect to Mt. For all values of δ, ∆IMML > 0, that is, our
inferred mixturesM∗ have a lower message length compared toMFJ when evaluated using our scoring
function. More interestingly, we also note that ∆IFJ > 0 (see Figure 5.7c). This reflects thatM∗ have
a lower message length compared to MFJ when evaluated using the scoring function of Figueiredo
and Jain (2002). This suggests that their search method results in a sub-optimal mixture MFJ and
fails to infer the better mixture M∗.

In addition to the message lengths, the mixtures are analyzed using the KL distance. Similar to
the bivariate example in Figure 5.6(c), the KL distance of our inferred mixtures M∗ is lower than
MFJ , the mixtures inferred by Figueiredo and Jain (2002). Figure 5.7(d) shows the boxplot of KL
distance of the inferred mixtures M∗ and MFJ . At higher values of δ >= 1.45, the median value of
KL distance is close to zero, as the number of correctly inferred components (Figure 5.7a) is more than
90%. However, the proposed method always infers mixturesM∗ with lower KL distance compared to
MFJ . These results demonstrate the superior performance of the proposed method.

Another experiment was carried out where δ = 1.20 was held constant (that is, the components are
extremely close), gradually increased the sample size N , and plotted the average number of inferred
components by running 50 simulations for each N . Figure 5.7(b) shows the results for the average
number of inferred components as the amount of data increases. The proposed search method, on
average, infers the true mixture when the sample size is ∼ 1000. However, FJ’s search method requires
larger amounts of data; even with a sample size of 2000, the average number of inferred components
is ∼ 1.9. In Figure 5.7(b), the red curve reaches the true number of 2 and saturates more rapidly than
the blue curve.

5.5.4 Discussion of Figueiredo and Jain (2002)’s method

One of the drawbacks associated with FJ’s search method is due to the form of the updating expression
for the component weights (Equation 5.9). As discussed in Section 5.3, an incorrect inference is bound
to happen when the net membership of a (valid) component is less than Np/2, where Np is the number
of free parameters per component. In such a case, the component weight is updated as zero, and is
eliminated, effectively reducing the mixture size by one.
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Figure 5.8: Evaluation of the quality of inferred mixtures by comparing the difference in message
lengths as computed using the two scoring functions. Positive difference indicates that the mixtures
inferred by our search method have lower message lengths and are better than those of MFJ (see
Equation 5.11).
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We conduct the following experiment to demonstrate this behaviour. Consider a two-component,
10-variate mixture, Mt, as before and randomly generate samples of size 50 from the mixture. Since
the constituent components ofMt have equal weights, on average, each component has a membership
of about 25. We used the varying values of δ = {10, 100, 1000}, so that the two components are well
apart from each other in each case. For each δ, we run 50 simulations and analyze the number of
inferred components. As expected, FJ’s search method infers a mixture with one component regardless
of the separation δ. In contrast, our method infers the correct number of components. In order to
test the validity of mixtures inferred by our proposed method, we analyze the resultant mixtures as
discussed in Section 5.5.1.

Figure 5.8(a) shows the difference in message lengths ∆IMML given in Equation 5.11. We observe
that ∆IMML > 0 for all δ. This demonstrates that our inferred mixtures M∗ have lower message
lengths than those of mixtures MFJ using our scoring function. The same phenomenon is observed
when using FJ’s MML-like scoring function. In Figure 5.8(b), we observe that ∆IFJ > 0, which
means our search based mixtures M∗ have lower message lengths compared to mixtures MFJ when
evaluated using their scoring function. This demonstrates that M∗ is a better mixture as compared
to MFJ , irrespective of the scoring function used to evaluate the mixture, and FJ’s search method is
unable to infer it.
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Figure 5.9: Box-whisker plot of KL distance of
mixtures inferred by the two search methods.
A random sample of size N = 50 is generated
for each δ and this is repeated 50 times.

We also note that the differences in message
lengths increases with increasing δ. This is because for
the one-component inferred mixtureMFJ , the second
part of the message (see Equation 5.8) which corre-
sponds to the negative log-likelihood term increases
because of poorer fit to the data. The two modes in
the data sampled from Mt become increasingly pro-
nounced as the separation between the components
in the true mixture increases and, hence, modelling
such a distribution using a one-component mixture re-
sults in a fit that becomes progressively worse. This is
clearly an incorrect inference. We further strengthen
the case for the superiority of our proposed method by
comparing the KL distance of the inferred mixtures
M∗ and MFJ with respect to Mt. Figure 5.9 illus-
trates these results. As δ increases, the blue coloured
plots shift corresponding to the mixtures MFJ in-
ferred by FJ’s method shift higher. The proposed
search method, however, infers mixtures M∗ with lower KL distance. The figure indicates that the
inferred mixtures M∗ are more similar to the true distribution as compared to the mixtures MFJ .

5.5.5 Analysis of the computational cost

At any intermediate stage of our search procedure, a current mixture with K components requires K
number of split, delete, and merge operations before it is updated. Each of the perturbations involve
performing an EM to optimize the corresponding mixture parameters. To determine the convergence
of the EM algorithm, a threshold of 10−5 is used to terminate the EM method, which was the same
as used by FJ in their experiments. The FJ’s method also requires to start with a large number of
components. We set this to 25 based on what was suggested in FJ. We investigate the number of
times the EM routine is called and compare it with that of FJ’s results.

The analysis corresponds to the simulations that were carried out previously. For the bivariate
mixture discussed in Section 5.5.2, the number of resulting EM iterations when the sample sizes are
N = 800 and N = 100 are shown in Figures 5.10(a) and (b), respectively. As per the discussion in
Section 5.5.2, at N = 800, the average number of components inferred by the two methods are about
the same. However, the number of EM iterations required by FJ’s method is greater than 200 across
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(a) Bivariate mixture (N = 800)
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(c) 10-variate mixture (N = 800)

Figure 5.10: Number of EM iterations performed during the mixture simulations discussed in Sections
5.5.2 and 5.5.3.

all values of δ (see Figure 5.10a). In contrast, the proposed method, on average, requires fewer than
50 iterations. In this case, both methods infer similar mixtures with FJ’s method requiring more
number of EM iterations. When the bivariate mixture simulation is carried out using N = 100, the
number of EM iterations required by FJ’s method, on average, is greater than 100, while the proposed
method requires fewer than 40 iterations (see Figure 5.10b). In this case, the proposed method not
only infers better mixtures (as discussed in Section 5.5.2) but is also conservative with respect to the
computational cost.

For the simulation results corresponding to the 10-variate mixtures (Section 5.5.3), our proposed
method requires close to 50 iterations on average, while FJ’s method requires about 20 (see Fig-
ure 5.10c). This is because our proposed method further perturbs the inferred two-component mix-
ture through a series of split, delete, and merge operations and each of them internally uses the EM
algorithm. However, the mixtures inferred by the proposed method fare better when compared to that
of FJ (see Figure 5.7). Furthermore, for the simulation results (see Section 5.5.4), FJ’s method stops
after 3 EM iterations because their method terminates prematurely by inferring a one-component
mixture. This is because their program does not accommodate components when the memberships
are less than Np/2. Our method requires 18 EM iterations on average and infers the correct mix-
ture components. In these two cases, our method infers better quality mixtures, with no significant
computational overhead.

These experiments demonstrate that the performance of our proposed search is better than the
widely used FJ’s method. We compared the resulting mixtures using both the proposed MML for-
mulation and FJ’s MML-like formulation, showing the advantages of the former over the latter. We
also used a neutral metric, KL distance, to establish the similarity of our inferred mixtures to the true
distributions.

5.5.6 Applications to real-world data

Acidity data set (Richardson and Green, 1997; McLachlan and Peel, 1997)

The proposed search and inference methodology is applied on two real-world data sets. The first
example is the univariate acidity data set which contains 155 points. The proposed search method
infers a mixture M∗ with 2 components whereas the search method of Figueiredo and Jain (2002)
infers a mixture MFJ with 3 components. The inferred mixtures are shown in Figure 5.11 and their
corresponding parameter estimates are given in Table 5.1. In order to compare the mixtures inferred
by the two search methods, the message lengths of the inferred mixtures are computed using the
proposed complete MML and the approximated MML-like (FJ’s) scoring functions.

When these mixtures are evaluated using the proposed MML scoring function, our inferred mixture
results in a gain of about 4 bits (see Table 5.2). Based on the MML framework, our two-component
mixture M∗ is 24 times more likely than the three-component mixture MFJ (as per Equation 2.5).
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(b) MFJ inferred by FJ’s search method.

Figure 5.11: Mixtures inferred by the two search methods using the acidity data set. Y-axis shows
the mixture probability density. (See Table 5.1 for the corresponding parameter estimates.)

Furthermore, when the inferred mixtures are evaluated using the MML-like (FJ’s) scoring function,
M∗ is still evaluated as better (∼ 298 bits) than MFJ (∼ 320 bits). Thus, as per both the scoring
functions, M∗ is the better mixture model of this data set.

Table 5.1: The parameters of the inferred mixtures shown in Figure 5.11

Component
Weight

Parameters
index (µ, σ2)

1 0.41 6.24, 0.28
2 0.59 4.33, 0.14

(a) Proposed

Component
Weight

Parameters
index (µ, σ2)

1 0.34 6.39, 0.17
2 0.35 4.21, 0.05
3 0.31 4.71, 0.36

(b) FJ

Table 5.2: Message lengths (measured in bits) of the mixtures (in Figure 5.11) as evaluated using the
MML and MML-like scoring functions.

Inferred mixtures

Scoring Proposed FJ
functions (M∗) (MFJ)

MML 1837.61 1841.69
MML-like 298.68 320.02

Iris data set (Anderson, 1935; Fisher, 1936)

The second example is the popular Iris data set. The data is 4-dimensional and comes from three
Iris species namely, Iris-setosa, Iris-versicolor, and Iris-virginica. The data size is 150 with each class
(species) comprising 50 representative elements.

The proposed search method infers a 4-component mixtureM∗ and the search method of Figueiredo
and Jain (2002) infers a 3-component mixture MFJ (see Figure 5.12). Table 5.3 shows the member-
ships of the 150 elements in each of the components in the inferred mixtures. We notice an additional
component M4 in M∗ which has a net membership of 9.51, that is, ∼ 6% of the entire data set. It
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appears that the component M2 inMFJ (Table 5.3b) is split into two components M2 and M4 inM∗
(Table 5.3a).

The quality of the inferred mixtures is determined by comparing their message lengths using the
MML and MML-like scoring functions. Table 5.4 shows the values obtained using the two formulations.
When evaluated using our complete MML formulation, our inferred mixture M∗ results in extra
compression of about 1 bit, which makes it twice as likely as MFJ – it is a closely competing model
compared to ours. When evaluated using the FJ’s MML-like scoring function, our inferred mixture
continues to have a lower message length. In both cases, the mixture M∗ inferred by our search
method is preferred.
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(a) M∗ inferred by the proposed search method.
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(b) MFJ inferred by FJ’s search method.

Figure 5.12: Mixtures inferred by the two search methods using the Iris data set. The data is projected
onto the leading two principal components.

Table 5.3: Memberships of Iris data as using the inferred mixtures in Figure 5.12 (a) Distribution of
data using M∗ (b) Distribution of data using MFJ

Species M1 M2 M3 M4

setosa 50 0 0 0
versicolor 0 5.64 44.36 0
virginica 0 40.29 0.20 9.51

(a) Data distribution using 4 components

Species M1 M2 M3

setosa 50 0 0
versicolor 0 5.55 44.45
virginica 0 49.78 0.22

(b) Data distribution using 3 components

Table 5.4: Message lengths (measured in bits) of the mixtures (in Figure 5.12) as evaluated using the
MML and MML-like scoring functions.

Inferred mixtures

Scoring Proposed FJ
functions (M∗) (MFJ)

MML 6373.01 6374.27
MML-like 323.31 342.57
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5.6 Summary

In this chapter, we have proposed a search method to infer an optimal mixture in a completely
unsupervised setting for modelling the given data. As noted in Section 5.3, inferring a suitable
mixture requires balancing the trade-off due to the mixture model’s complexity and its goodness-of-
fit to the data. We discussed the various methods that aim to resolve this trade-off. However, the
existing methods are based on approximations of the mixture’s complexity and hence, do not address
the trade-off satisfactorily (see Section 5.3). To rectify those drawbacks, we outlined a comprehensive
MML formulation that is used to evaluate competing mixtures and select the better one.

Furthermore, unlike the previous MML-based methods, we proposed a search strategy that pro-
gressively alters the mixture size by Split, Delete, and Merge perturbations (see Section 5.4). Of all
the perturbations, we select the one that results in the greatest improvement to the total message
length. By doing so, we are making sure that the new mixture is an improved version of the current
one. We perform an exhaustive search by considering the operations on all components in the mixture.
These different operations give a mixture the best chance to escape a local optimum. The strategic
operations minimize the possibility of the EM algorithm resulting in sub-optimal mixture parameters.

In order to better motivate the search method, we presented an example illustrating the inference
of a Gaussian mixture. We explained how the different operations lead to different stages in the
evolution of the mixture model. We obtain various intermediate mixtures that are sub-optimal as
part of the search process. However, the search method perturbs these sub-optimal mixtures to
eventually converge to an improved mixture model (see Section 5.4.3). We have tested the proposed
approach against the widely cited method of Figueiredo and Jain (2002).

Figueiredo and Jain (2002) proposed a method that begins with a large number of components
and iteratively eliminates components with no provision to recovering a component if it is deleted in
error. As we highlighted in Section 5.3.6, their method is based on an approximated MML criterion
that essentially ignores the encoding of the components’ parameters and hence, leads to a simplifying
expression to quantify the complexity of a mixture model. We have conducted a thorough analysis
comparing our proposed method to that of Figueiredo and Jain (2002). We have demonstrated that
our proposed method results in better mixtures in a variety of contexts, as explained in Section 5.5.
The evaluation of the two search methods is carried on both simulated and real-world data. We
published the search method to infer optimal mixtures in Kasarapu and Allison (2015).

Although we discussed the method in the context of inference of multivariate Gaussian mixtures,
our method can be generalized to accommodate probability distributions whose parameters can be
estimated using the Wallace and Freeman (1987) approximation. We demonstrate this in the context
of inference of mixtures of directional probability distributions for modelling protein directional data
in the next chapter.



Chapter 6

Mixture modelling of directional
distributions

6.1 Introduction

The previous chapter presented a general purpose mixture modelling method to infer mixture com-
ponents and their parameters. The method was explained in the context of modelling using Gaussian
mixtures. While Gaussian mixtures are ubiquitous in nature, mixture modelling using other prob-
ability distributions have also been widely used (McLachlan and Peel, 2000). This chapter extends
our search and method proposed in the previous chapter to directional probability distributions. In
particular, we discuss mixtures of the multivariate vMF (mixture modelling on the unit hypersphere),
3D FB5 (mixture modelling on the 3D unit sphere), and BVM (mixture modelling on the 3D torus)
distributions.

The importance of vMF and FB5 distributions in mixture modelling tasks has been well estab-
lished: vMF mixtures have been used in large-scale text clustering (Banerjee et al., 2003; Gopal and
Yang, 2014), clustering of protein dihedral angles (Dowe et al., 1996a; Mardia et al., 2007), and gene
expression analyses (Banerjee et al., 2005). Mixtures of FB5 distributions have been employed by Peel
et al. (2001) to identify joint sets in rock masses, and by Hamelryck et al. (2006) to sample random
protein conformations. The FB5 distribution has increasingly found support in machine learning tasks
for structural bioinformatics (Kent and Hamelryck, 2005; Boomsma et al., 2006; Hamelryck, 2009).
The mixtures of BVM distributions have been used in modelling protein dihedral angles (Dowe et al.,
1996a; Mardia et al., 2008).

For the directional distributions considered, we adapt our generalized search method (discussed
in Section 5.4) by modifying the split operation to cater for the respective directional probability
distribution. Note that since the directional distributions are defined on the surfaces of a sphere and a
torus, the split operation explained in the case of Gaussian mixtures (defined in the Euclidean space)
is not directly applicable.

The rest of the chapter is organized as follows: Section 6.2 first details the changes in our search
method needed to infer multivariate vMF mixtures. It then studies the performance of our proposed
search method by presenting empirical analyses of mixture modelling using vMF distributions under
varying scenarios. It then applies the vMF mixtures in modelling high-dimensional text data that is
normalized to lie on the unit hypersphere. We have demonstrated the ability of our search method
to infer mixtures of text documents in a completely unsupervised setting as opposed to the existing
work of Banerjee et al. (2005).

Section 6.3 outlines the mixture modelling apparatus using the FB5 distributions. We illustrate
the progression of the various stages of our search method through an example. We then apply the
FB5 mixtures in modelling protein directional data. For comparison, we also model the same data using
vMF mixtures. In both cases, we demonstrate the ability our search method to infer components that
are biologically meaningful. The resulting vMF and FB5 mixtures are demonstrated to be superior
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models as opposed to the näıve uniform model (Konagurthu et al., 2012) and, therefore, serve as
efficient descriptors of protein directional data. Furthermore, we show that FB5 mixtures supersede
the vMF mixtures in their ability to better explain the protein directional data.

Section 6.4 discusses the search and inference of mixtures of bivariate von Mises (BVM) distri-
butions. As a specific application, we employ the mixtures to model protein dihedral angles. As
explained in Section 4.4, the BVM Sine distribution has the ability to model correlated data. In
order to demonstrate the utility of the BVM Sine distributions, we provide a comparison with mix-
tures of BVM Independent distributions that are not ideal to model correlated data. As expected,
the results of mixture modelling indicate the ability of the Sine mixtures to efficiently describe the
empirical distribution of protein dihedral angles. We demonstrate that our search method is able
to infer meaningful clusters that directly correspond to frequently occuring conformations in protein
structures.

6.2 Mixtures of multivariate von Mises-Fisher distributions

In this section, we use our search method (proposed in Section 5.4) to infer mixtures of multivariate
vMF distributions. To achieve this, that is, to infer the optimal number of mixture components,
the mixture modelling apparatus that was explained in the case of multivariate Gaussian mixtures is
modified to cater for the directional data distributed on the surface of a unit hypersphere.

The strategic split, delete, and merge operations that are part of the search method are tailored
to vMF mixtures. In each operation, the EM algorithm is used to estimate the mixture parameters
(Section 5.2.2). In the M-step of the EM algorithm, the parameters of the vMF components are
updated using their respective MML estimates. Recall in Section 4.2.2, we described the MML esti-
mation of the parameters of the vMF distribution. The update rule to estimate the parameters for
Gaussian mixtures given by Equation 5.7 is modified to obtain the MML estimators of the vMF mean
(Equation 4.11), and the vMF concentration parameter, which is obtained by minimizing the message
length expression given by Equation 4.12.

For the jth vMF component in the mixture, the resultant vector sum is updated as Rj(t + 1) =∑N
i=1 rij(t)xi, where rij(t) is an element of the responsibility matrix at iteration t (Section 5.2.2). If

Rj(t+1) represents the magnitude of vector Rj(t+1), then the updated mean is given by the following
equation.

µ̂j(t+ 1) =
Rj(t+ 1)

Rj(t+ 1)

The MML update of the concentration parameter κ̂j(t + 1) is obtained by solving G(κ̂j(t + 1)) = 0
after substituting N → nj(t) and R→ Rj(t+ 1) in Equation 4.13.

As part of the search method, in the split operation detailed in Section 5.4.2, we need to initialize
the component means of the two child components. Recall that in the case of splitting a Gaussian
mixture (parent) component, we computed the direction of maximum variance and identified two
points that are one standard deviation away on either side of the parent mean. These correspond to
the initial means of the children. The computation of the children means is feasible in this manner for
Gaussian components. However, in the case of a multivariate vMF parent component, this approach
cannot be readily used as the directional data is on the surface of a hypersphere and not in the
Euclidean plane. Hence, while splitting a multivariate vMF component, we simply assign the means
randomly. In this context, we explain another splitting strategy tailored for data distributed on the
three-dimensional unit sphere in Section 6.3.1.

The delete and merge operations are carried out in the same spirit as those described in Sec-
tion 5.4.2. During merging vMF components, the closest pair is identified by computing the KL
distance. In the case of vMF distributions, an analytical form for the KL distance is derived in
Appendix B.3.
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6.2.1 Experimental analyses of vMF mixtures

In this section, we use the search method described above to infer mixtures of vMF distributions and
perform an empirical evaluation. The experimental setup involves generating data randomly from a
pre-defined mixture distribution, and then employing our proposed search method to infer the optimal
number of mixture components. The amount of data that is sampled is progressively increased in our
experiments. For each sample size N , the simulation is repeated 50 times and the number of inferred
components is plotted.

The search method is analyzed assuming that the original mixtures from which the data is gener-
ated have one of the following two characteristics

1. The true components in the mixture have different mean directions (separated by an angle θ).

2. The true components in the mixture have the same mean direction but different concentration
parameters.

The MML estimates of the parameters of a vMF distribution have been derived and explained in
Section 4.2.2. The vMF concentration parameter κ is estimated using the MML-Halley approximation
(Equation 4.15). These estimates are used in the EM steps of the mixture modelling method. The
various case studies are discussed below.

Components have different means: The true mixture has two components with equal mixing propor-
tions. We consider the case when the dimensionality is d = 3. The mean of one of the vMF components
is aligned with the Z-axis. The mean of the other component is chosen such that the angle between the
two means is θ degrees. Figure 6.1(a) illustrates the scenario when the concentration parameters of
the constituent components are different. Figure 6.1(b) shows the variation in the number of inferred
components when the true vMF components have the same concentration parameter. In both scenar-
ios, as the angular separation is progressively increased, the components become more distinguishable
and, hence, lesser amount of data is required to accurately identify them.
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Figure 6.1: Average number of components inferred for the two-component mixture whose means are
separated by θ degrees.

When the concentration parameters of the constituent components are different (Figure 6.1a), the
inference of the mixture is relatively easier compared to the case when the concentration parameters
are same (Figure 6.1b). In Figure 6.1(a), for all angular separations, the true number of components
is correctly inferred at a sample size of N = 200. When θ = 20◦, the search method converges faster at
N ∼ 100 as compared to θ = 5◦, when the convergence is at N ∼ 160. In Figure 6.1(b), when θ = 5◦,



114 CHAPTER 6. MIXTURE MODELLING OF DIRECTIONAL DISTRIBUTIONS

the search method infers only one-component as the true mixture components are hardly distinguish-
able. When θ = 10◦, even at N ∼ 1000, the average number of inferred components is ∼ 1.8. When
θ = 15◦, the search method converges at N ∼ 300 as compared to N ∼ 120 in Figure 6.1(a). Clearly,
when the component means are different, it is easier to correctly infer mixtures whose components
have different concentration parameters.

Components have the same mean but different concentration parameters: In this case, multivariate (d =
{2, 3, 10}) vMF mixtures with equal mixing proportions and same component means are considered.
The simulation results of true mixtures with two and three components are presented here.

Figure 6.2(a) shows the average number of components inferred for a two-component mixture
whose concentration parameters are κ1 = 10 and κ2 = 100. For each value of d, as the sample size
increases, the average number of inferred components saturates to the true value (2 in this case).
Increasing the sample size beyond this does not impact the number of inferred mixture components.
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Figure 6.2: Average number of components inferred when the true mixture has components with the
same mean direction but different concentration parameters. (a) 2-component mixture (κ1 = 10, κ2 =
100) (b) 3-component mixture (κ1 = 10, κ2 = 100, κ3 = 1000)
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Figure 6.3: Gradual increase in the average in-
ferred components for the 3-component mix-
ture in Figure 6.2(b).

The results for a 3-component mixture with iden-
tical means but different concentration parameters
κ1 = 10, κ2 = 100, and κ3 = 1000 are shown in Fig-
ure 6.2(b). As expected, the average number of in-
ferred components increases in the light of more data.
However, it clearly requires greater amount of data
to correctly infer the three mixture components as
compared to the two-component case. In the two-
component case (Figure 6.2a), at around N = 450,
all three curves converge to the right number of com-
ponents. For the three-component mixture in Fig-
ure 6.2(b), there is no convergence for d = 2, 3 no-
ticeable until N = 500. For d = 10, the average num-
ber of inferred components converges much faster for
the 2-component mixture (N ∼ 25) than for the 3-
component mixture (N ∼ 100).

It is also interesting to note that for d = 2 in Fig-
ure 6.2(b), the average number of inferred components
appears to saturate at 2, while the actual number of mixture components is 3. However, as the amount
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of available data increases, the (almost) horizontal line shows signs of gradual increase in its slope.
Figure 6.3 shows the increase in the average number for d = 2, 3 as the data is increased beyond
N = 500. The blue curve representing d = 3 stabilizes at N ∼ 2500. However, the red curve (d = 2)
slowly starts to move up but the average is still well below the true number. This demonstrates
the relative difficulty in estimating the true mixture when the means coincide, especially at lower
dimensions.

As shown above, when the means coincide, greater amount of data is needed to accurately infer
the true mixture components. Further, the amount of data needed also depends on the dimensionality
in consideration. It appears that as the dimensionality increases, we need smaller amounts of data (as
can be seen for the d = 10 case). In d-dimensional space, each datum comprises of d real values with
the constraint that it should lie on the unit hypersphere. So, the estimation of the mean direction
requires the estimation of (d−1) values and one value for κ. When there is data of size N , we actually
have nd = N × (d − 1) values available for estimating the d free parameters. For instance, given a
sample of size N , for d = 2, n2 = N and for d = 10, n10 = 9N . We conjecture that this could be
a possible reason for faster convergence in high dimensional space. Through these experiments done
so far, the ability of the proposed search method to infer appropriate mixtures is demonstrated in
situations with varying difficulty levels.

6.2.2 Application to text clustering

The use of vMF mixtures in modelling high dimensional text data has been investigated by Banerjee
et al. (2005). Computing the similarity between text documents requires their representation in some
vector form. The elements of the vectors are typically a function of the word and document frequencies
in a given collection. These vector representations are commonly used in clustering textual data with
cosine based similarity metrics being central to such analyses (Strehl et al., 2000). There is a strong
argument for transforming the vectors into points on a unit hypersphere (Salton and McGill, 1986;
Salton and Buckley, 1988). Such a normalized representation of text data (that compensates for
different document lengths) motivates their modelling using vMF mixture distributions.

Banerjee et al. (2005) proposed an approximation (Equation 4.5) to estimate the parameters of a
mixture with a known number of components. They did not, however, propose a method to search for
the optimal number of mixture components. In contrast, we not only derive the MML estimates and
show they fare better than the previous approximations (see Chapter 4), but also use them to devise
a search method that infers the optimal mixtures (see Section 5.4). Ideally, the search is continued
until there is no further improvement in the message length (Algorithm 1). For practial purposes, the
search is terminated when the improvement due to the intermediate split, delete and merge operations
during the search process is less than 0.01%.

In order to determine the optimal number of components, Banerjee et al. (2005) vary the number
of mixture components and compute the mutual information (MI) to assess the quality of clustering
for each mixture. For given cluster assignments X and the (known) class labels Y , MI is defined as

E

[
log

Pr(X,Y )

Pr(X) Pr(Y )

]
. In addition to the message length criterion, we also use the MI criterion to

compare the quality of the inferred mixtures.

Further, the actual class labels of the data can be compared against the labels predicted as per
the cluster assignment. This is done using a confusion matrix, which is a tabulation of the number of
true/false positives/negatives. Using the tabulated numbers, we can compute the classification error
in terms of precision and recall. Precision is the proportion of the correctly classified cases in the total
data. Recall is the proportion of the correctly classified points in each class. The error of classification
is then computed using the F-measure, which is the harmonic mean of the precision and recall of the
classification model, where a good model is one with a high F-measure. The average F-measure is
calculated when the number of inferred clusters is the same as the number of actual classes.

For each of the data sets, in the preprocessing step, feature vectors are generated for each document
in the collection by computing a score for each word. The score is a function of the frequency of
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occurrence of the word in the document (term frequency, TF) and the inverse document frequency
(IDF), that is, the number of documents which contain the word. One such scoring function that
combines the TF and IDF values is the Okapi BM25 score (Robertson and Zaragoza, 2009), which
is typically used in quantifying the relevance of a word in a document, in the context of information
retrieval. These feature vectors are then normalized to generate unit vectors in some d-dimensional
space. Using this as directional data on a hypersphere, a suitable mixture model was inferred using
the search algorithm proposed in Section 5.4.

Classic3 dataset

This dataset1 contains documents from three distinct categories: 1398 Cranfield (aeronautical re-
lated), 1033 Medline (medical journals) and 1460 Cisi (information retrieval related) documents. The
processed data has d = 4358 features.

Optimal number of clusters: While this data set is known to have three distinct categories, this
information is not usually known in real world setting (and we do not know if they are from three
vMF distributions). Assuming no knowledge of the nature of the data, the search method infers
a mixture with 16 components. The corresponding assignments are shown in Table 6.1. A closer
look at the generated assignments illustrates that each category of documents is represented by more
than one component. The three categories are split to possibly represent specialized sub-categories.
The Cisi category is distributed among 6 main components (M4 - M9). The Cranfield documents
are distributed among M6, M10 - M15 components and the Medline category is split into M0 - M3,
and M6 components. It is observed that all but three components are non-overlapping; only M6 has
representative documents from all three categories.

Table 6.1: Confusion matrix for 16-component assignment (MML-Halley).
M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

cisi 0 0 4 0 288 133 28 555 197 255 0 0 0 0 0 0
cran 0 0 0 0 2 0 362 1 0 0 58 144 135 175 223 298
med 9 249 376 138 2 0 9 0 0 0 0 0 0 0 0 0

The 16-component mixture inferred by the search method is a finer segregation of the data when
compared to modelling using a 3-component mixture. The parameters of the 3-component mixture are
estimated using the EM algorithm of Section 5.2.2. Table 6.2 shows the confusion matrices obtained for
the cluster assignments using the various estimation methods. We see that all the estimates perform
comparably with each other; there is not much difference in the assignments of data to the individual
mixture components.

Table 6.2: Confusion matrices for 3-cluster assignment. (Sra’s confusion matrix is omitted as it is
same as that of Tanabe)

cisi cran med

cisi 1441 0 19
cran 22 1293 83
med 8 0 1025

(a) Banerjee

cisi cran med

cisi 1449 0 11
cran 24 1331 43
med 13 0 1020

(b) Tanabe

cisi cran med

cisi 1450 0 10
cran 24 1339 35
med 14 0 1019

(c) Song

cisi cran med

cisi 1450 0 10
cran 24 1331 43
med 13 0 1020

(d) MML (Halley)

The collection is comprised of documents that belong to dissimilar categories and, hence, the clus-
ters obtained are wide apart. This can be seen from the extremely high F-measure scores (Table 6.3).
For the 3-component mixture, all five different estimates result in high F-measure values with Song
being the best with an average F-measure of 0.978 and an MI of 0.982. MML-Halley’s estimate is

1http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
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close with an average F-measure of 0.976 and an MI of 0.976. However, based on the message length
criterion, the MML estimate results in the least message length (∼ 190 bits less than Song’s). The
mutual information score using MML estimate is 1.04 (for 16 components) compared to 0.976 for 3
components. Also, the message length is lower for the 16-component case. However, Song’s estimator
results in a MI score of 1.043, very close to the score of 1.040 obtained using MML estimates.

Table 6.3: Clustering performance on Classic3 dataset.
Number of clusters Evaluation metric Banerjee Tanabe Sra Song MML (Halley)

3
Message length (bits) 100678069 100677085 100677087 100677080 100676891

Avg. F-measure 0.9644 0.9758 0.9758 0.9780 0.9761
Mutual Information 0.944 0.975 0.975 0.982 0.976

16
Message length (bits) 100458153 100452893 100439983 100444649 100427178
Mutual Information 1.029 1.036 0.978 1.043 1.040

For the Classic3 dataset, Banerjee et al. (2005) analyzed mixtures with greater numbers of com-
ponents than the “natural” number of clusters. They report that a 3-component mixture is not
necessarily a good model and more number of clusters may be preferred for this example. As part
of their observations, they suggest to “generate greater number of clusters and combine them ap-
propriately”. However, this is subjective and requires some background information about the likely
number of clusters. The proposed search method, in conjunction with the inference framework, is able
to resolve this dilemma and determine the optimal number of mixture components in a completely
unsupervised setting.

CMU Newsgroup

This dataset2 contains documents from 20 different news categories each containing 1000 documents.
Preprocessing of the data, as discussed above, resulted in feature vectors of dimensionality d = 6448.
The data is first modelled using a mixture containing 20 components. The evaluation metrics are
shown in Table 6.4. The average F-measure is 0.509 for MML-based estimation, slightly better than
Banerjee’s score of 0.502. The low F-measure values are indicative of the difficulty in accurately
distinguishing the news categories. The mutual information score for the MML case is 1.379, which
is lower than that of Sra’s. However, the total message length is lower for the MML mixture when
compared to that of others.

Optimal number of clusters: The proposed search method when applied to this dataset infers a mixture
with 21 components. This is close to the “true” number of 20 (although there is no strong reason
to believe that each category corresponds to a vMF component). The mutual information for the
21-cluster assignment is highest for Sra’s mixture with a score of 1.396 and for MML mixture, it is
1.375 (Table 6.4). However, the total message length is the least for the MML-based mixture.

Table 6.4: Clustering performance on CMU Newsgroup dataset.
Number of clusters Evaluation metric Banerjee Tanabe Sra Song MML (Halley)

20
Message length (bits) 728666702 728545471 728585441 728536451 728523254

Avg. F-measure 0.502 0.470 0.487 0.435 0.509
Mutual Information 1.391 1.383 1.417 1.244 1.379

21
Message length (bits) 728497453 728498076 728432625 728374429 728273820
Mutual Information 1.313 1.229 1.396 1.377 1.375

The analysis of vMF mixtures by Banerjee et al. (2005) for both the datasets considered here
shows a continued increase in the MI scores even beyond the true number of clusters. As such, using
the mutual information score for different number of mixture components does not aid in the inference

2http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
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of an optimal mixture model. Our proposed search method balances the trade-off between using a
certain mixture and its ability to explain the observed data and, thus, objectively aids in inferring
mixtures to model the normalized vector representations of a given collection of text documents.

Potential extensions of the search method: A mixture modelling problem of the kind where there is
some information available regarding the nature of the data can be studied by altering our proposed
generic search method. In such scenarios, some alternate strategies where the mixture modelling can
be done in a semi-supervised setting are provided below.

• The priors on the number of components and their parameters can be modelled based on the
background knowledge.

• If the true number of clusters are known, only splits may be carried out until we near the
true number (each split being the best one given the current mixture). As the mixture size
approaches the true number, all the three operations (split, delete, and merge) can be resumed
until convergence. This increases the chance of the inferred mixture having about the same
number of components as the true model.

• Another variant could be to start from a number close to the true number and prefer delete/merge
operations over the splits. The split operations cannot be ignored completely because a compo-
nent after splitting may be merged at a later iteration if there would be an improvement to the
message length.

• Another strategy could be to employ the EM algorithm and infer a mixture with the true number
of components. This mixture can then be perturbed using split, delete, and merge operations
until the perturbations do not improve the message length.

6.3 Search and inference of mixtures of 3D Kent distributions

Let us now extend the search method described in Section 5.4 to infer mixtures of Kent distributions.
To infer the optimal number of mixture components, the mixture modelling apparatus is modified to
cater to the directional data distributed on the surface of a three-dimensional (3D) sphere. Specifically,
the split operation detailed in Section 5.4.2 is modified as described below. The procedure for deleting
and merging the components is same as that in the case of Gaussian or vMF mixtures. During
merging FB5 components, the KL distance is evaluated as shown in Appendix B.3. Further, in all
the operations, the MML estimators of the FB5 distribution are used in the update step of the EM
algorithm (Section 5.2.2).

6.3.1 Splitting a mixture component of a directional distribution

As part of the split operation, we need to generate two child components from a parent component.
This is done in order to check the suitability of modelling the data using a mixture with a greater
number of components. The children are obtained by an EM algorithm carried on the data distribution
corresponding to the parent. In order to ensure that the child components are distinct, during the
EM initialization of the children, their initial components are chosen to lie on either side of the parent
mean along the direction of maximum variance. This gives the children the best chance to escape
from the local optimum (corresponding to the parent component). This splitting strategy is, however,
specific to Gaussian mixtures.

A strategy akin to splitting Gaussian components is not directly applicable to directional distri-
butions. For multivariate vMF distributions, the initial means are selected randomly, an approach
used in vMF mixture modelling (Section 6.2). However, an alternative strategy can be proposed as
explained below.
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X1 = γ ′′1

X2

X3

ψ

γ ′′2

γ ′′3

O

√
l1

θ

P

M1

Figure 6.4: Initializing the means of the child
FB5 components while splitting the parent.

Selection of initial means of the two child components:
The procedure is explained in the case of distribu-
tions defined on the surface of a 3D sphere, but can
be generalized to higher dimensions as well (for exam-
ple, multivariate vMF mixtures). The procedure for
moment estimation of the major and minor axes of
an FB5 distribution involves the eigenvalue decompo-
sition of the matrix BL, the submatrix derived from
the dispersion matrix B (see Section 4.3.2). If l1 and
l2 are the eigenvalues of BL (see Equation 4.20), then
l1, l2 are roots of the characteristic equation

l2−(b22+b33)l+b22b33−b223 = 0 so that l1+l2 = b22+b33

According to Equation 4.22, we have l1 − l2 = r2,
and hence, l1 = (b22 +b33 +r2)/2. The maximum vari-
ance is along the direction of major axis and is equal
to the eigenvalue l1. Hence, one standard deviation
would correspond to

√
l1. It is to be noted that these calculations are done in the X2X3 plane (see

Section 4.3.1) which contains the major and minor axes (that is, after the mean of the parent, as part
of moment estimation, is aligned with X1). However, it is now required to map this point back onto
the unit sphere.

Consider Figure 6.4 where γγγ′′2 and γγγ′′3 are the major and minor axes in the X2X3 plane respectively
(see Figure 4.3). The mean axis γγγ′′1 of the parent component being split is aligned with X1. The
segment OP has length

√
l1 corresponding to a unit standard deviation along γγγ′′2. Let M1 be the mean

of one of the children. Then, for M1 such that M1P is perpendicular to the X2X3 plane, we have
M1P =

√
1− l1 (as OM1 = 1 is the radius of the sphere). If θ ∈ [0, 180◦] measures the co-latitude

of the mean M1 as shown, we have θ = arccos
√

1− l1. The mean M2 (not shown in the figure) of
the second child component lies in the plane containing OM1P such that the angle between OM2

and OX1 is θ. The two means are then transformed in order to conform with the axes of the parent
FB5 component. With these as starting points for the EM algorithm, the two child components are
locally optimized. The children along with the untouched (K−1)-components, then, serve as a starting
point for estimating the parameters of the (K + 1)-component mixture using the EM algorithm.

6.3.2 Illustrative example of the search procedure

The mechanics of the inference of a suitable FB5 mixture model hves been explained previously in
Sections 5.4 and 6.3.1. To better illustrate the search process, in the case of FB5 distributions, this
section presents a detailed example.

Consider a mixture with three FB5 components (Figure 6.5a) that have equal mixing proportions,
the same concentration parameter κ = 100 but different eccentricities. The red component has
eccentricity e = 0.1 and the angular parameters defining its axes are (ψ, α, η) = (0, 60◦, 45◦). The
green component has e = 0.5 and (ψ, α, η) = (150◦, 45◦, 30◦). The blue component has e = 0.9 and
(ψ, α, η) = (30◦, 45◦, 60◦). The parameters are chosen such that the components are close to each
other. A sample of size N = 1000 was generated from the mixture using the method of Kent et al.
(2013).

For ease of visualization, the density is represented in the (θ, φ)-space, where θ is the co-latitude and
φ is the longitude (Figure 6.5b). The Cartesian coordinates of each datum M given by x = (x1, x2, x3)T

in the sampled data are transformed into the spherical coordinates defined by unit radius, co-latitude,
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Figure 6.5: Original mixture with equal component weights and κ = 100. (a) individual components
with varying eccentricities: e = 0.1 (red), 0.5 (green), and 0.9 (blue), (b) transformation between
the spherical and Cartesian coordinate system, and (c) data plotted in degrees in the (θ, φ)-space
(contours encompass 90% of the data distribution).

and longitude:3 x1 = cos θ, x2 = sin θ cosφ, x3 = sin θ sinφ. The resulting mixture density is
shown as a heat map in Figure 6.5(c).

The search method explained

The search begins by inferring a one-component mixture M1 (Figure 6.6a). It has an associated
message length of I = 19364 bits. Before splitting the component, the means of the children are
initialized as shown in Figure 6.6(b). These means are determined as explained in Section 6.3.1.
The children are optimized using the EM algorithm to generate the two-component mixture M2

(Figure 6.6c). M2 has a message length of I = 19319 bits and, hence, improves M1 by 45 bits.

3It is to be noted that transforming data generated from an FB5 distribution (that has elliptical contours on the
spherical surface) and representing in the (θ, φ)-space produces shapes that do not have any decipherable pattern as can
be seen through this example.
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In the second iteration, each of the two components in M2 are split, deleted, and merged. Fig-
ure 6.7(a)-(c) illustrates the splitting of component P1. After integrating the optimized children and
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(c) M2 (I = 19319 bits)

Figure 6.6: Iteration 1 (a) one-component mixture, (b) Red colour denotes the parent component
being split, the red dot indicates the mean of the parent and the black dots (on either side) indicate
the initial means of the children, (c) improved mixture.
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Figure 6.7: Iteration 2 – Split operations. (a)-(c) splitting the first component P1 in M2, and (d)-(f)
splitting the second component P2 in M2. The red dashed lines in (b),(e) represent the optimized
children (prior to integration), and black dashed lines in (b),(e) represent the unchanged components.
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subsequently optimizing the resulting 3-component mixture using an EM algorithm, an improved mix-
tureM3 is obtained. Figure 6.7(d)-(f) illustrates the splitting of component P2. In this case, splitting
P2 results in the same 3-component mixture M3. It is to be noted that while splitting P1 and P2

produce different intermediate states, as shown in Figure 6.7(b) and (e), the EM converges to the
same optimal state in these cases.

Figure 6.8(a)-(f) illustrate the deletion of P1 and P2. While their deletions also have different
intermediate starting points, as shown in Figure 6.8(b) and (e), the EM algorithm results in the same
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Figure 6.8: Iteration 2 – Deletions and Merging (green colour represents the component being deleted
and blue the pair being merged).
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sub-optimal state (same as M1). As this one-component mixture has a greater message length than
that of M2, the deletion operations do not result in improved mixtures. The merging of P1 and P2

components, as shown in Figure 6.8(g)-(i), also does not improve on M2. Hence, after the second
iteration, it is observed that amongst all perturbations, the splitting of P1 or P2 results in an improved
mixture M3.

In the third iteration, all perturbations are carried out exhaustively. Figure D.1 (in the Appendix)
depicts the splitting, deletion, and merging of one of the three components (P1) inM3. Observe, during
splitting, the initial selection of means of the child components. The procedure outlined in Section 6.3.1
faithfully separates the two children and results in a mixture with a greater number of components.
However, in this case, the optimized mixtureM4 (Figure D.1c) does not improve the message length.
Similarly, the deletion of P1 does not lead to an improved mixture (Figure D.1f). While merging P1,
KL divergence is used to determine an appropriate candidate that is closest. Accordingly, the pair is
selected (Figure D.1g) which also does not result in an improved mixture (Figure D.1i). The other
two components in M3 are also perturbed similarly. However, the operations do not result in an
improvement.

Progression of the two-part message length

The progression of the various states of the mixture model during the search process is explained in
terms of the two-part message length (Equation 5.5). While increasing the number of mixture compo-
nents leads to increased mixture complexity, the goodness-of-fit to the data improves. The first part of
the message corresponds to the encoding of the mixture parameters (number of components, weights,
and constituent components’ parameters). The second part mainly corresponds to the description of
the data using the given mixture model.
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Figure 6.9: Variation of the individual parts of the total message length with increasing number of
components (note that the two Y-axes have different scales: the first part of the message follows the
right side Y-axis; while the second part of the message and total message lengths follow the left side
Y-axis)

In the previous example, the search method infers three components and terminates thereafter.
The message lengths corresponding to the optimal mixtures obtained during the associated search
process are plotted in Figure 6.9. It is observed that, until K = 3, the total message length (green
curve) decreases. The variation of the message length is examined beyond the inferred number of
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components. For this, starting from K = 4 until K = 10, we estimated the mixture parameters using
the EM algorithm (Section 5.2.2) for each value of K > 3. The results indicate that the total message
length steadily increases beyond K = 3. The reason is that although the negative log-likelihood of
the data decreases with increasing K, the second part of the message (the blue curve) only changes
marginally, while the first part continues to increase. Thus, as mixtures become overly complex, there
is a greater cost associated with encoding their parameters. This affects the total message length as
the minimal gain in negative log-likelihood is overshadowed by the increase in the first part of the
message. Hence, this example demonstrates the effectiveness of the search method in the context of
FB5 distributions. Furthermore, it also demonstrates the ability of the MML criterion to balance the
tradeoff between the model complexity and the goodness-of-fit to the data.

6.3.3 Mixture modelling of protein coordinate data

The applicability of high-dimensional vMF mixtures in real-world context has been previously demon-
strated in Section 6.2.2. In this section, the applicability of mixtures of the vMF and FB5 distributions
is demonstrated in the context of modelling experimental 3D protein structural data.

A protein structure consists of a chain of amino acid residues that forms the protein backbone. We
consider the protein structure so that the arrangement of atoms along the protein main chain begins
with a Nitrogen (N) atom and ends with a Carbon (C) atom (referred to as N- to C-terminus). Each
residue along this backbone is identified by a central carbon atom denoted by Cα (see Figure 6.10a).
The structures that proteins adopt are largely dictated by the chemical interactions between these
constituent atoms. These chemical interactions impose constraints on the orientation of atoms with
respect to one another due to which the distance between consecutive Cα atoms is highly constrained
to be 3.8 Å. Due to this property, the coordinates of any given Cα can be expressed in a canonical
fashion in the context of its preceding Cα atoms.

The almost constant distance between the main chain carbon atoms motivates their modelling us-
ing directional probability distributions. The directional data under consideration correspond to the
orientations of Cα atoms in the corpus of known protein structures. Models of this directional data
have applications to structural modelling tasks such as generating random protein chain conformations,
three-dimensional protein structure alignment, secondary structure assignment, and representing pro-
tein folding patterns using concise protein fragments. These tasks rely on efficient encoding of protein
data (Konagurthu et al., 2012, 2013; Collier et al., 2014). As part of the results, and compared to
the vMF mixtures, it is demonstrated that FB5 mixtures offer a better means of encoding and can
potentially serve as strong candidate models to be used in such varied tasks.
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Figure 6.10: Canonical orientation used to generate the directional data (θ, φ) corresponding to the
protein Cα coordinates.
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The data set considered here is a collection of 1802 non-redundant experimentally determined
protein structures from the popular and publicly available ASTRAL SCOP-40 (version 1.75) database
(Murzin et al., 1995) representing the “β class” proteins. For each protein structure, the coordinates
of the central carbon Cαof successive residues are considered. Protein coordinate data is transformed
into directional data and each direction vector is characterized by (θ, φ) = (co-latitude, longitude),
where θ ∈ [0, 180◦] and φ ∈ [0, 360◦). Note that these (θ, φ) values have to be measured in a consistent,
canonical manner. To compute (θ, φ) corresponding to the point Pi+1 associated to residue i+ 1, this
point is considered in the context of the three preceding points, forming a 4-mer comprising of the
points Pi−2,Pi−1,Pi, and Pi+1. This 4-mer is orthogonally transformed into a canonical orientation
(Figure 6.10b) in the following steps

• translate the 4-mer so that Pi is at the origin.

• rotate the resultant 4-mer so that Pi−1 lies on the X3 axis.

• rotate further, so that Pi−2 lies in the X2X3 plane and the angle between the vector Pi−2 −Pi−1

and the X2 axis is acute.

The transformation yields a canonical orientation for Pi+1 with respect to its previous three coor-
dinates. Using the transformed coordinates of Pi+1, the direction (θ, φ) of Pi+1 is computed. This
transformation is repeated for every successive set of 4-mers in the protein chain, over all possible
source structures in the collection. The empirical data collected in this way consists of 251,346 (θ, φ)
pairs and both vMF and FB5 mixtures are inferred on this directional data using the proposed search
method.

A random sample of 10,000 (θ, φ) pairs generated from this empirical distribution is shown in
Figure 6.11. The sphere is shown from different perspectives to illustrate the distribution of the data
on its surface. The colour gradient represents the heat map corresponding to the data distribution with
regions of high density coloured yellow (hot). In Figure 6.11(a) and (b), we see a concentrated mass of
data (in yellow) that corresponds to helical regions in protein structures. Further in Figure 6.11(c), we
observe the ellipse-like blue regions roughly corresponding to the β-strands in proteins. This illustrates
the multimodal nature of the data distribution on the spherical surface. We therefore consider mixtures
of vMF and FB5 probability distributions to model this data.

(a) (b) (c)

Figure 6.11: A sample of 10,000 points randomly generated from the empirical distribution of (θ, φ)
pairs. The figure shows the random sample from different viewpoints.

Search of vMF and FB5 mixtures

The search method inferred a 35-component vMF mixture and terminated after 41 iterations involving
split, delete, and merge operations. When modelled using FB5 distributions, the search method
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inferred 23 components and terminated after 33 iterations. In each of these iterations, for every
intermediate K-component mixture, each constituent component is split, deleted, and merged (with
an appropriate component) to generate improved mixtures. As usual, the method terminates when
these perturbations do not result in an improvement.

In the case of a vMF mixture, the search method begins with a one-component mixture, con-
tinuously favours splits over delete and merge operations until a 26-component mixture is inferred.
This corresponds to the steady increase in the first part of the message length as observed by the red
curve in Figure 6.12(a) until the 26th iteration. Thereafter, a series of deletions and splits result in an
intermediate sub-optimal 27-component mixture at the end of the 29th iteration. This is characterized
by the step-like behaviour of the red curve between the 26th and the 29th iteration.
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(b) FB5 mixture

Figure 6.12: Progression of the quality of the vMF and FB5 mixtures inferred by our proposed search
method. Note there are two Y-axes in both (a) and (b) with different scales: the first part of the
message follows the right side Y-axis (red); while the second part and total message lengths follow the
left side Y-axis (black).

The first part of the message is dependent on the number of components (model complexity)
and an increase in number of mixture components leads to an increase in the encoding cost of the
parameters. From the 29th iteration, the method continues to split the constituent components until
a 36-component mixture is inferred after 38 iterations. This is reflected in the continuous rise of
the red curve in Figure 6.12(a) between the 29th and 38th iterations. Thereafter, through a series of
perturbations, the final resultant mixture has 35 components at the end of 41 iterations, characterized
by a step-like behaviour towards the end between 38th and 41st iterations.

In the case of the FB5 mixture, the search method infers a 23-component mixture at the end
of 23 iterations by continuous splitting. This corresponds to the steady increase in the first part
of the message length denoted by the red curve in Figure 6.12(b). From here on, after a series
of perturbations, the final mixture stabilizes at the end of 33rd iteration thereby resulting in a 23-
component mixture. This is characterized by the step-like behaviour corresponding to intermediate
reduction and increase in the number of mixture components between the 24th and 33rd iterations.

In both cases, the second part of the message length continues to decrease as the number of
mixture components increases. An initial sharp decrease is observed in both mixture types because
the data is not effectively described using fewer number of components (less than 5) given that the
data is multimodal. The search method terminates when the increase in the first part dominates the
reduction in the second part leading to an increase in total message length.
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6.3.4 Comparison of vMF and FB5 mixture models of protein data

The resulting vMF and FB5 mixtures of protein directional data are shown in Figure 6.13. In order to
effectively visualize the individual mixture components, the illustration includes the contours of the
components such that they encompass 80% of the probability corresponding to each component. The
data plotted is a random sample of 10, 000 (θ, φ) pairs drawn from the empirical distribution of β class
of proteins. The regions in Figure 6.13 are coloured based on the empirical distribution (heat map).
There are two distinguishable regions of the distribution of θ and φ values. At (θ, φ) ∼ (90◦, 60◦),
there is a concentrated mass which corresponds to the helical region in a typical protein. The area
characterized by θ ∈ (40◦, 80◦), φ ∈ (180◦, 270◦) roughly corresponds to the strand region in proteins.

The search method inferred a 35-component vMF mixture and a 23-component FB5 mixture. It is
observed that the number of components used to model the entire collection of 251,346 (θ, φ)-pairs us-
ing a FB5 mixture model is fewer compared to a vMF mixture. This is expected as a vMF distribution
is a specific case of a FB5 distribution and, hence, a vMF mixture requires more components to model
data that is asymmetrically distributed. In Figure 6.13(a), the vMF mixture components 1-9 are used
to model the helical region (approximately), whereas in Figure 6.13(b), the same region is modelled
using FB5 mixture components 1-6. Similarly, the strand region in the proteins is modelled by com-
ponents 10-15 in the vMF case, whereas, it is modelled by components 7-11 using the FB5 mixture.
Further, components 16-22 in the vMF mixture and components 12, 13 in the FB5 mixture model
the same region. The other regions in the protein directional data space follow the same modelling
pattern, that is, with fewer FB5 components. These observations reflect the better explanatory power
of FB5 mixtures compared to vMF mixtures.

Compared to a singleton vMF distribution, the encoding cost of the parameters of a FB5 distri-
bution would be greater as it is a complex model with more number of parameters. As shown in
Table 6.5, the encoding cost of the parameters of the inferred 23-component FB5 mixture is 1095 bits.
A vMF mixture with the same number of components has a first part equal to 819 bits (a difference of
276 bits). However, the second part of the message (the fit to the data) is lower for the FB5 mixture (a
difference of ∼ 18, 000 bits). Hence, the gain in the second part outweighs the greater cost of encoding
the more complex FB5 mixture. Thus, the total message length is lower for the FB5 mixture and
serves as a better model to explain the data. If the 23-component vMF mixture is compared with the
35-component vMF mixture inferred by our search method, the vMF mixture with 23 components has
smaller first part and greater second part (Table 6.5), which is expected. The 35-component mixture
has a first part equal to 1237 bits compared to 819 bits in the 23-component case (a difference of 418
bits). However, there is a gain of 12,000 bits in the second part, thus, resulting in a significantly lower
total message length in the 35-component case. Through this analysis, it is shown how the trade-off
of choosing a complex model and the quality of fit is addressed using the MML framework.

Table 6.5: Message lengths of the mixtures inferred on the protein directional data.

Mixture Number of First part Second part Total message length
model components (thousands of bits) (millions of bits)

vMF 23 0.819 5.491 5.492
vMF 35 1.237 5.479 5.481
FB5 23 1.095 5.473 5.474

It is also interesting to note the shape of the contours generated by both vMF and FB5 mixtures.
A vMF distribution caters to symmetrically distributed data and has circular contours of constant
probability on a spherical surface. Hence, in the (θ, φ)-space, we see regular oval-shaped contours
as shown in Figure 6.13(a). In contrast, an FB5 distribution has ellipse-like contours on a spherical
surface (Figure 4.4). Thus, when projected onto the (θ, φ)-space, it results in a myriad of contour
shapes (Figure 6.13b) depending on the parameters defining an FB5 distribution.
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Figure 6.13: Mixtures inferred on the β-class proteins (θ and φ are in degrees).

Utility of the inferred mixture models in structural bioinformatics

The better explanatory power of FB5 mixtures over vMF mixtures leads to enhanced data compression
(demonstrated through Table 6.5) and, hence, serves as an efficient descriptor to model directional
data. In the context of proteins, the previous null model description is based on the näıve uniform
distribution on the sphere (Konagurthu et al., 2012). The null model description provides a baseline for
encoding protein coordinate data in modelling tasks in structural bioinformatics (Konagurthu et al.,
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2012, 2013; Collier et al., 2014). In this regard, the use of vMF and FB5 mixtures offers a better
alternative as opposed to an encoding that uses the uniform distribution.

The message length expressions to encode the directional data using uniform, vMF, and FB5 null
models are given by Equation 6.1 (Konagurthu et al., 2012; Kasarapu and Allison, 2015), where x
corresponds to a unit vector described by (θ, φ) on the surface of the sphere, ε is the precision4 to
which each coordinate is measured, and r denotes the distance between successive Cα atoms. In
Equation 6.1, for the vMF mixture, K = 35 and the null model corresponding to the FB5 mixture has
K = 23 components.

Uniform Null = − log2

(
ε2

4πr2

)
= log2(4π)− 2 log2

( ε
r

)
bits.

vMF & FB5 Null = − log2

 K∑
j=1

wjfj(x; Θj)

− 2 log2

( ε
r

)
bits. (6.1)

The inferred vMF and FB5 mixture models are then used to encode the entire protein data. After
accounting for the distances between the successive Cα atoms (r ∼ 3.8 as in Figure 6.10a), the resulting
total message lengths are given in Table 6.6. The uniform distribution is clearly not an appropriate
descriptor and this can be reasoned from the fact the data is concentrated only in about one-half of
the (θ, φ)-space (Figure 6.11a).

Further, the empirical distribution has multiple modes and is best modelled using mixtures (Fig-
ure 6.13). The inferred vMF mixture has better explanatory power over the uniform distribution as
it has a corresponding saving of 446,000 bits over 251,346 data points (residues). This translates to
an enhanced compression of 1.778 bits per residue (on average). The inferred FB5 mixture, however,
encodes the same amount of data with a saving of 7,000 bits against the vMF mixture (an average
of 0.026 bits extra compression per residue). The results following the application of FB5 mixtures
to modelling protein directional data demonstrate that that they supersede the vMF mixture models
(Table 6.6). The ability of FB5 distributions to model asymmetrical data leads to an improved encod-
ing of the protein data. Hence, they serve as natural successors to the vMF null model descriptors.

Table 6.6: Comparison of the null model encoding lengths based on uniform distribution, vMF mixture
(35 components), and FB5 mixture (23 components).

Null model
Message length Bits per

(millions of bits) residue

Uniform 6.895 27.434
vMF mixture 6.449 25.656
FB5 mixture 6.442 25.630

Comparison of the MML criterion with AIC and BIC

The MML criterion is used to compute the score associated with a mixture model by separately
encoding the parameters (first part) and the data given those parameters (second part). This yields
the total message length (Equation 5.5) which is used to find improved mixtures during the search
process. In addition to the MML criterion, as discussed in Section 5.3, the traditional information-
theoretic criteria used are AIC and BIC/MDL (see Chapter 2).

AIC and BIC introduce constant term penalties depending on the number of free parameters in
the mixture model. These are given by Equations 2.7 and 2.6 respectively. For a vMF mixture with
K components, the number of free parameters is p = 3K + (K − 1) = 4K − 1 (3 free parameters per
component plus K − 1 mixture weights). Similarly, for an FB5 mixture, p = 5K + (K − 1) = 6K − 1.

4Protein coordinate data is measured to an accuracy of ε = 0.001Å.
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Mixture modelling of some observed data based on these criteria can be done as follows:

• Exhaustive search: The search heuristic (Section 5.4) to determine the optimal mixture can
be used alongside any objective function and not necessarily the MML criterion. The series of
perturbations are carried out as described and the improvement to mixtures is determined based
on the criterion in use.

• Traditional search: As discussed in Section 5.3.1, the traditional search method using AIC/BIC
involves estimating the mixture parameters using the EM algorithm (Section 5.2.1) for varying
number of components K and choosing the one which results in minimum criterion value.

It is to be noted that with the MML criterion, the EM algorithm in Section 5.2.2 is used to obtain
the MML estimates of the mixture parameters. However, with AIC and BIC, the EM algorithm in
Section 5.2.1 results in the maximum likelihood (ML) estimates for a given K. For FB5 mixtures,
the ML estimates are often approximated by the moment estimates which are used in the M-step of
the EM algorithm (Peel et al., 2001; Kent and Hamelryck, 2005; Hamelryck et al., 2006). The results
for mixtures obtained using the ML estimates and their approximations are compared against those
obtained using the MML-based estimates.

The results pertaining to the exhaustive search method are shown in Table 6.7. It is observed that
when the search is based on AIC, the mixtures resulting due to moment and ML estimation have 37
and 34 components respectively. The moment and the ML mixtures have the same AIC values in this
case. With BIC, the mixture resulting from the ML estimation has the lower BIC value. In this case,
the moment and the ML mixtures have 23 and 24 components respectively. This number resembles
the one obtained by the exhaustive search but MML-based parameter estimation. The ML mixture
has the lowest BIC score.

Table 6.7: FB5 mixtures inferred by employing the exhaustive search method and changing the eval-
uation criteria and methods to estimate mixture parameters.

Criterion

Moment mixtures Maximum likelihood mixtures

K
Criterion Message

K
Criterion Message

score length score length
(×105 bits) (×106 bits) (×105 bits) (×106 bits)

AIC 37 2.313 5.474 34 2.313 5.474
BIC 23 4.647 5.475 24 4.645 5.474

The results pertaining to the traditional search method are shown in Figure 6.14. As the number of
components K is increased, it is expected that the AIC and BIC scores decrease until some minimum
is reached and then increase thereafter. The value of K at which this behaviour happens is treated
to be the optimal mixture that models the data. It is observed that initially, both criteria decrease
and after K = 30, the values do not change dramatically. By increasing K, the linear increase in
penalty factors and the associated increase in log-likelihood are of the same magnitude and, hence,
the difference in criteria is not apparent. Thus, using the traditional search, it is difficult to decide on
an appropriate number of mixture components.

The trend observed in Figure 6.14 is the same for mixtures obtained using both moment and
ML estimates. The expressions for AIC and BIC do not help in distinguishing the moment and ML
mixtures because for different types of estimates and a given K, the penalty terms are the same. Also,
the log-likelihood is approximately the same because for huge amounts of data, as is the case here, all
the estimates converge to the same value.

In contrast, if we compute the first part message lengths corresponding to the moment and ML
mixtures for a given K, the differences in their encoding lengths become apparent. The variation in
the first part message lengths for the moment and ML mixtures resulting from the traditional search
are shown in Figure 6.16. It is observed that until K = 30, the first part message lengths of moment
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and ML mixtures are close to each other. In Figure 6.16(b), when K > 30, there are minute differences
between encoding lengths of mixture parameters obtained using moment and ML estimates. Thus,
unlike AIC/BIC, the MML criterion is able to distinguish mixtures with equal number of components.
The first part corresponds to the model complexity and is dependent on not just the number of
components K but also on the components’ parameters themselves according to the MML framework.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5  10  15  20  25  30

F
ir

st
 p

ar
t 

(i
n

 b
it

s)

Number of mixture components (K)

MOMENT

MLE

(a)

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 30  35  40  45  50

F
ir

st
 p

ar
t 

(i
n

 b
it

s)

Number of mixture components (K)

MOMENT

MLE

(b)

Figure 6.16: First part message length corresponding to mixtures evaluated using AIC. The results
for BIC display the same pattern and are, hence, not shown. (the range of K ∈ [1, 50] is split into two
sub-figures (a) and (b) in order to highlight the differences in the message lengths).

The above discussion is aimed at projecting the limitations of the traditional search method and
also the use of AIC and BIC as the evaluation criteria. We find in MML an objective way to assess
mixtures and, in conjunction with the search method, offers a better alternative to determine reliable
mixture models. We further illustrate the behaviour of the search method with smaller amount of
data. The previous discussion pertains to the entire empirical data set containing N = 251, 346 (θ, φ)
pairs. In the current context, from the empirical distribution, we randomly sample varying amounts of
data ranging from N = 1000 to N = 20, 000. The experiment is conducted by fixing the search method
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(exhaustive) but changing the evaluation criteria to infer suitable FB5 mixtures. It is observed that
the mixtures based on AIC have greater number of components as compared to BIC and MML (see
Figure 6.15). The mixtures corresponding to BIC and MML have the same number of components
in most of the experimental trials. These results are in agreement with what was observed on the
complete protein data (Table 6.7), where AIC resulted in greater number of components.

6.4 Mixtures of bivariate von Mises distributions

We consider two kinds of bivariate von Mises (BVM) distributions in mixture modelling. In addition to
the Sine variant (Equation 4.43) that has the correlation parameter λ, we also consider the independent
variant obtained when λ = 0. The independent version assumes zero correlation between the data
distributed on the torus (see Equation 4.45). We provide a comparison for the mixture models obtained
using both versions of the BVM distributions.

Previous work on MML-based modelling of protein dihedral angles used independent BVM distri-
butions (Dowe et al., 1996a). Their work used the Snob mixture modelling software (see Section 5.3.7).
As pointed out by Dowe et al. (1996a), Snob does not have the functionality to account for the corre-
lation between the data. We therefore study the BVM Sine distributions and demonstrate how they
can be integrated with our generalized MML-based mixture modelling method.

6.4.1 Approach for BVM distributions

We extend the search method described in Section 5.4 to infer mixtures of BVM distributions. To
infer the optimal number of mixture components, the mixture modelling apparatus is now modified
to handle the directional data distributed on the surface of a three-dimensional (3D) torus.

As in the case of the 3D vMF and FB5 distributions, the split operation detailed in Section 5.4.2 is
tailored for the BVM mixtures. The basic idea behind splitting a parent component is to identify the
means of the child components so that they are on either side of the parent mean and are reasonably
apart from each other. Recall that for a Gaussian parent component, we computed the direction of
maximum variance and selected the initial means, along this direction, that are one standard deviation
away on either side of the parent mean. We employ the same strategy for BVM distributions. For
data D = {x1, . . . ,xN}, where xi = (φi, ψi) such that φi, ψi ∈ [−π, π), we compute the direction
of maximum variance in the (φ, ψ)-space. This allows us to compute the initial means of the child
components.

The delete and merge operations are carried out in the same spirit. During merging BVM compo-
nents, the KL distance is evaluated to determine the closest pair. We derive the KL distance for BVM
Sine and BVM Independent distributions as shown in Appendix C.1. Further, in all the operations,
the MML estimators of the BVM Sine distribution, derived in Section 4.4.3 are used in the update
step of the EM algorithm (Section 5.2.2). We adopt the search strategy as described in Algorithm 1.

6.4.2 Mixture modelling of protein main chain dihedral angles

Recall that in Section 6.3.3 we explained the arrangement of the central carbon Cα atoms along the
protein backbone. We previously considered the directional data arising from the spatial orientations
of these Cα atoms. Because of the almost constant Cα-Cα distance, the data was generated using
the spherical coordinate system and, therefore, we modelled the data using mixtures of vMF and
FB5 directional probability distributions.

In this section, we consider the spatial orientations resulting from not just the Cα atoms but also
the C and N atoms that link the Cα atoms. A protein main chain is characterized by a sequence
of φ, ψ, and ω angles. These angles uniquely determine the 3D geometry of the protein backbone
structure (Richardson, 1981). However, in a majority of protein structures, ω = 180◦ and, hence the
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sequence of Cα-C-N-Cα atoms lie in a plane (see the dotted planar representation in Figure 6.17a).
As a result, the angles φ and ψ are typically analyzed5 (Ramachandran et al., 1963).

The angles φ and ψ are called the dihedral angle pair corresponding to an amino acid residue
with a central carbon atom Cα along the protein main chain. Geometrically, a dihedral angle is the
angle between any two planes defined using four non-collinear points. In Figure 6.17(a), φ is the angle
between the two planes formed by C-N-Cα and N-Cα-C. Similarly, ψ is the angle between the two
planes formed by N-Cα-C and Cα-C-N.

(a) (b)

Figure 6.17: Protein main chain dihedral angles denoted by (φ, ψ).

The dihedral angles φ and ψ are measured in a consistent manner. For example, in order to
measure φ, the four atoms C-N-Cα-C are arranged such that φ is calculated as the deviation between
N-C and Cα-C when viewed in some consistent orientation. As an illustration, in Figure 6.17(b), view
the arrangement of the four atoms through the N-Cαbond such that Cα is behind the plane of the
paper and N eclipses the Cα atom. Also, the C atom directly attached to N is at the 12 o’ clock
position. In this orientation, φ is given as the angle of rotation required to align the N-C bond with
the Cα-C bond in the plane of the paper. Further, if it is a clockwise rotation, it is considered a
positive value. This ensures that φ ∈ [−π, π). The dihedral angle ψ is measured by following the same
convention with the four atoms being N-Cα-C-N. The (φ, ψ) pair measured in this way can be plotted
on the surface of a 3D torus. Each (φ, ψ) pair corresponds to a point on the toroidal surface. The
angle φ is used to identify a particular cross-section (circle) of a torus, while ψ locates a point on this
circle (see Figure 6.18).

As in Section 6.3.3, we generate the directional data (dihedral angles in this case) from the pre-
viously considered 1802 experimentally determined protein structures from the ASTRAL SCOP-40
(version 1.75) database (Murzin et al., 1995) representing the “β class” proteins. The number of (φ, ψ)
dihedral angle pairs resulting from this data set is 253,165. We model this generated set of dihedral
angles using BVM Sine distributions.

A random sample from this empirical distribution consisting of 10,000 points is shown in Fig-
ure 6.19. The plot is a heat map showing the density of the data distribution on the toroidal surface.
Note that there are regions on the torus which are highly concentrated (yellow), corresponding to the
helical regions in the protein. The ellipse-like patches (mostly in blue) roughly correspond to the β
strands in proteins. Furthermore, the data is multimodal which motivates its modelling using mixtures
of BVM distributions. We consider the effects of using the BVM Sine distribution as compared to the
BVM Independent variant in this context.

5Note that the angle φ is different from the one considered in modelling using vMF and FB5 distributions in Sec-
tion 6.3.3.
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R

φ

(a) Identifying the cross-section at φ

r

ψ

(b) Circular cross-section at φ

Figure 6.18: Representing a (φ, ψ) point on the torus.

Figure 6.19: A sample of 10,000 points randomly generated from the empirical distribution of (φ, ψ)
pairs. The figure shows the random sample from different viewpoints.

Search of BVM Independent and BVM Sine mixtures

The search method inferred a 32-component BVM Independent mixture and terminated after 42
iterations involving split, delete, and merge operations. In the case of modelling using BVM Sine
distributions, our search method inferred 21 components and terminated after 29 iterations. In each
of these iterations, for every intermediate K-component mixture, each constituent component is split,
deleted, and merged (with an appropriate component) to generate improved mixtures.

The progression of the search method for the optimal BVM Independent mixture begins with a
single component. The search method results in continuous split operations until the 17th iteration
when a 17-component mixture is inferred (see Figure 6.20a). This corresponds to a progressive increase
in the first part of the message (red curve). Between the 17th and the 21st iterations, we observe a
series of delete/merge and split operations leading to a stable 19-component mixture. The search
method again continues to favour the split operations until the 28th iteration when a 26-component
mixture is inferred. Thereafter, a series of deletions and splits yield a stable 29-component mixture at
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the end of the 35th iteration. The search method eventually terminates when a 32-component mixture
is inferred with a characteristic step-like behaviour towards the end indicating perturbations involving
split and delete/merge operations (see Figure 6.20a).

In the case of searching for the optimal BVM Sine mixture, our proposed search method continues
to split the components thereby increasing the mixture size. This occurs until 21 iterations. At this
stage, there are 21 mixture components. This can be observed in Figure 6.20(b), when the first part
of the message (red curve) continually increases until the 21st iteration. During this period, observe
that the second part (blue) and the total message length (green) continually decrease signifying an
improvement to the mixtures.

After the 21st iteration, we observe a step-like behaviour as in the case of mixture modelling
using the BVM Independent distributions. The behaviour characterizes the reduction or increase in
the number of mixture components corresponding to a decrease or increase to the first part of the
message. After the 24th iteration, we observe that the mixture has 22 components. However, the final
mixture stabilizes in the subsequent iterations to a 21-component mixture. After the 29th iteration,
there is no further improvement to the total message length and the search method terminates.
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Figure 6.20: Progression of the quality of the BVM mixtures inferred by our proposed search method.
Note there are two Y-axes in both (a) and (b) with different scales: the first part of the message
follows the right side Y-axis (red); while the second part and total message lengths follow the left side
Y-axis (black).

There are striking similarities to the progression of the search method when compared with that
used for the inference of vMF and FB5 mixture models. We observe the same characteristic increase
in the mixture size initially followed by some perturbations stabilizing the intermediate mixture (step-
like behaviour), and eventually resulting in an optimal mixture (see Figure 6.12). Similar to the
case of vMF and FB5 mixtures, there is an initial sharp decrease in the total message length until
about 7 iterations for BVM mixtures. Because of the multimodal nature of the directional data (see
Figure 6.19), the initial increase in the number of components would explain the data distribution
corresponding to those modes that are clearly distinguishable. This leads to a substantial improvement
to the total message length as the minimal increase in the first part is dominated by the gain in the
second part. However, towards the end of the search, when the increase in first part dominates the
reduction in second part, the method stops. Thus, we see the trade-off of model complexity (as a
function of the number of components and their parameters), and the goodness-of-fit being balanced
using the search based on the MML inference framework.

6.4.3 Comparison of BVM mixture models of protein data

The existing work of MML-based mixture modelling of protein dihedral angles by Dowe et al. (1996a)
inferred 27 clusters using the BVM Independent distributions. In contrast, our search method inferred
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32 clusters. However, their data consists of only 41,731 (φ, ψ) pairs generated from the protein
structures known at that time. In contrast, we have used 253,165 pairs of dihedral angles along with
a different search method as explained previously (see Section 6.4.2). So, there is some consensus on
the rough number of component distributions if the protein dihedral angles were modelled using BVM
distributions assuming no correlation between φ and ψ.

The visualization of the dihedral angles is commonly done by the Ramachandran plot (Ramachan-
dran et al., 1963) who first analyzed the various possible protein configurations and represented them
as a two-dimensional plot. An example of one such plot is provided in Lovell et al. (2003) and re-
produced here (Figure 6.21). Such a plot is indicative of the allowed conformations that protein
structures can adopt. There are vast spaces in the dihedral angle space where few data are present.
The conformations corresponding to those regions are not possible. We consider the plot to explain
the similarities between our inferred mixture models and the one that is traditionally used.

Figure 6.21: Models of the protein main chain dihedral angles (φ and ψ are in degrees). Plot taken
from Lovell et al. (2003).

Our resulting mixtures of BVM Independent and the Sine variants are shown in Figure 6.22. The
contours of the constituent components plotted in the (φ, ψ)-space can be seen in the diagram. For
visualization purposes, we display the contour of each component that corresponds to 80% of the
data distribution. The data in Figure 6.22 corresponds to a random sample drawn from the empirical
distribution (same as in Figure 6.19) visualized in the (φ, ψ)-space.

In Figure 6.21, we observe that the top-left region corresponds to the β strands in protein struc-
tures. The empirical distribution of dihedral angles we generated also has this characterstic. We
observe a concentrated mass in the top-left in Figure 6.22. Furthermore, our inferred mixtures are
able to model this region using the appropriate components. Note that smaller or highly compact
contours correspond to BVM distributions that have greater concentration parameters (κ1 and κ2 in
Equation 4.43).
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(a) BVM Independent MML mixture (32 components)

φ

-180 -120 -60 0 60 120 180

ψ

-180

-120

-60

0

60

120

180

16

15

14

8

4

13

5

7

12

11

10

3

9

2

6

1

(b) BVM Sine MML mixture (21 components)

Figure 6.22: Models of the protein main chain dihedral angles (φ and ψ are in degrees).
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We note that components numbered 1-11 (Figure 6.22a) and components 1-8 (Figure 6.22b) are
used to describe this region. These correspond to the components of the BVM Independent and BVM
Sine models respectively. Clearly, more number of components are required to model roughly the same
amount of data (corresponding to the β strands) using the BVM Independent mixture.

Similarly, in Figure 6.21, we observe another concentration of mass in the middle-left portion of
the figure. This corresponds mainly to right-handed α-helices, which are very frequent in protein
structures. In Figure 6.22, we have the corresponding mass and also note the dense region (bright
yellow). As per our inferred mixtures, component 17 (Figure 6.22a) and component 12 (Figure 6.22b)
are used to predominantly describe this dense region. The other surrounding regions in the dihedral
angle space of the right-handed helices are described by components 12-19 (Figure 6.22a) and by com-
ponents 9-13 (Figure 6.22b). Again, we observe that the similar data is described using 8 components
by the BVM Independent mixture as opposed to 5 components by the BVM Sine mixture.

Lovell et al. (2003) display another region of concentrated mass in the middle-right of Figure 6.21.
This region corresponds to the infrequent left-handed helices in protein structures. We see a cor-
responding mass in the empirical distribution in Figure 6.22. The components 20-25 of our inferred
BVM Indenpendent mixture describe this region (Figure 6.22a). The same region is described by com-
ponents 14-16 of our inferred BVM Sine mixture (Figure 6.22b). Notice how this region is described
by components 15 and 16. These two components describe the dense mass within this region while
component 14 is responsible for mainly modelling the data that is further away from this clustered
mass. We again observe that the same region is modelled by greater number of components when
using BVM Independent distributions.

The remaining mixture components describe the insignificant mass present in other regions of the
dihedral angle space. The ability of our inferred mixtures to identify and describe specific regions
of the protein conformational space in a completely unsupervised setting is remarkable. Further, we
have qualified the effects of using the BVM distributions which do not account for the correlation
between the dihedral angle pairs. In this regard, the BVM Sine mixtures fare better when compared
to mixtures of BVM Independent distributions. We now quantify these effects in terms of the total
message length.

As described in Section 5.4, our proposed search method to infer an optimal mixture involves
evaluating the encoding cost of the mixture parameters or the first part (model complexity), and
encoding the data using those parameters or the second part (goodness-of-fit). The progression of
the search method continues until there is no improvement to the total message length. We observe
that the resulting 21-component BVM Sine mixture has a first part of 966 bits and a corresponding
second part of 5.735 million bits (see Table 6.8). A BVM Independent mixture with the same number
of components has a first part of 872 bits and a corresponding second part of 5.751 million bits.
Although the model complexity is lower for the BVM Independent mixture (difference of ∼ 94 bits),
the BVM Sine mixture has an additional compression of ∼ 16, 000 bits in its goodness-of-fit. Thus,
the significant gain in the second part dominates the minimal increase in the first part of the BVM
Sine mixture.

Further, if we compare the 21-component BVM Independent mixture with the inferred 32-component
BVM Independent mixture, we observe that the first part is more in the 32-component case. This
is expected because there are more number of mixture parameters to encode in the 32-component
mixture. There is a difference of 1292 − 872 = 420 bits (see Table 6.8). However, the 32-component
mixture results in an extra compression of ∼ 15, 000 bits. So, the total message length is lower for the
32-component mixture, and is therefore, preferred to the 21-component BVM Independent mixture.

When the inferred 32-component BVM Independent and the 21-component BVM Sine mixtures
are compared, we observe that the total message length is lower for the BVM Sine mixture. In this
case, both the first and second parts are lower for the Sine mixture leading to an overall gain of about
∼ 1000 bits. Thus, the BVM Sine mixture is more appropriate as compared to the BVM Independent
mixture in describing the protein dihedral angles. This exercise shows how an optimal mixture model
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Table 6.8: Message lengths of the BVM mixtures inferred on the protein dihedral angles.

Mixture Number of First part Second part Total message length
model components (thousands of bits) (millions of bits)

Independent 21 0.872 5.751 5.752
Independent 32 1.292 5.736 5.737

Sine 21 0.966 5.735 5.736

is selected by achieving a balance between the trade-off due to the complexity and the goodness-of-fit
to the data.

Furthermore, as in the case of the vMF and FB5 distributions, we can devise null model descriptions
of protein dihedral angles based on the BVM mixtures. For comparison, we consider a uniform
distribution on the torus, which is referred to as the uniform null model in the equation below.

Uniform Null = − log2

(
ε2

4π2Rr

)
= 2 log2(2π)− log2

(
ε2

Rr

)
bits.

where R and r are the radii that define the size of the torus (see Figure 6.18). When R = r = 1, the
surface area of the torus is 1/4π2. The null models based on the BVM mixtures have the same form
as the vMF and FB5 mixtures given in Equation 6.1 with K = 32 and K = 21 corresponding to the
Independent and the Sine variants respectively.

Compared to the uniform model, both the BVM mixtures result in additional compression (see
Table 6.9). The message length to encode the entire collection of 253,165 dihedral angle pairs using the
uniform null model is 6.388 million bits which amounts to 25.234 bits per residue. In comparison, the
BVM Independent mixture results in a compression of 5.735 million bits which amounts to 22.656 bits
per residue. The additional compression is therefore, close to 2.58 bits per residue (on average). The
BVM Sine mixture further leads to an additional compression of 323 bits over the BVM Independent
mixture. This is equivalent to an additional saving of 0.0013 bits per residue (on average).

Table 6.9: Comparison of the null model encoding lengths based on the uniform distribution on the
torus, the 32-component BVM Independent and the 21-component BVM Sine mixtures.

Null model
Message length Bits per

(in bits) residue

Uniform 6,388,508 25.2346
BVM Independent mixture 5,735,711 22.6560

BVM Sine mixture 5,735,388 22.6547

These results indicate that the BVM mixtures are superior compared to the uniform model. This
can be argued from the fact that the empirical distribution (see Figure 6.19) has empty regions in the
dihedral angle space. This is also confirmed from the Ramachandran plot (Figure 6.21). However, the
BVM Independent and the BVM Sine variants are in close competition with each other. Noting that
we need more mixture components in the Independent case and because the Sine mixture can describe
the data more effectively, we conclude that the BVM Sine mixture supersedes the BVM Independent
mixture. The ability of the BVM Sine mixture to model correlated data leads to improved description
of the protein dihedral angles.

6.5 Summary

In this chapter, we have extended our proposed search method (described in Chapter 5) to infer mix-
tures of directional probability distributions. The generalized mixture modelling apparatus is tailored
to cater to specific probability distributions. Based on the nature of the probability distributions, the
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Split operation discussed in Section 5.4 needs to be fine-tuned. Additionally, in order to carry out the
Merge operation that requires identification of a closest component based on KL distance, we derived
the expressions to compute the KL distance for each individual probability distribution.

We have considered the modelling of directional data that is distributed on the unit hypersphere
(by multivariate vMF mixtures), on the 3D sphere (by FB5 mixtures), and on the 3D torus (by BVM
mixtures). We have validated the performance of the search method by modelling multivariate data on
the unit hypersphere in varying scenarios. We have employed the vMF mixtures to determine clusters
of text documents. We have shown how our search method is able to determine an optimal number
of vMF clusters in an unsupervised manner without requiring to have any background knowledge of
the distribution of the data. We published the results of mixture modelling using vMF distributions
(Kasarapu and Allison, 2015).

The FB5 mixtures have been employed for modelling asymmetrically distributed data on the unit
3D sphere. We have generated the directional data corresponding to the coordinates of Cα atoms
along the protein backbone (see Section 6.3.3). The resulting FB5 mixtures are able to identify
conformationally relevant regions in the directional angle space corresponding to protein structures.
We observe that the mixtures clearly describe the frequently occuring helical and β-strand regions in
protein structures using suitable mixture components.

We contrasted the FB5 mixtures with vMF mixtures of the protein directional data. The inferred
vMF and FB5 mixtures have 35 and 23 components respectively. Because the vMF is a special case of
a FB5 distribution, we observe that the same data is modelled using a greater number of vMF compo-
nents. The vMF distributions are best suited to model data that is symmetrically distributed around
a mean direction. However, the empirical distribution of protein directional data is predominantly
asymmetrical. Hence, more number of vMF distributions are required to model an asymmetrical
region. In comparison, the FB5 distributions can effectively model asymmetrically distributed data.
Consequently, we obtain fewer number of FB5 mixture components. Furthermore, we note that both
the vMF and FB5 mixtures are superior to a uniform description of the protein directional data while
we demonstrated that FB5 mixtures supersede the vMF mixtures in terms of effectively describing
the data (Kasarapu, 2015).

We finally considered the modelling of protein dihedral angles using mixtures of BVM distributions
(see Section 6.4.2). The empirical distribution of the pairs of dihedral angles represented on a toroidal
surface clearly suggests correlation between the angle pairs. As such, the BVM Sine mixtures are
appropriate. The search method to infer the optimal number of mixture components resulted in a
21-component BVM mixture. In comparison, we use the BVM Independent distributions to model
the same correlated data. The search method inferred a 32-component BVM Independent mixture.
As in the case of vMF and FB5 mixtures, we notice similarities in the description of the correlated
dihedral angle data with greater number of components using the BVM Independent distributions.
This is because the Independent variant is a specific case of the BVM Sine distribution. Naturally, an
improved description of the dihedral angles would be achieved due to the Sine variant.

Both the BVM Independent and the Sine mixtures effectively model the dihedral angle space. The
ability of the search method to correctly identify components corresponding to the regions of possible
protein configurations is remarkable. This is more so because our search method does not rely on
anything other than the MML framework to evaluate competing mixture models. In all the above
considered directional probability distributions, the underpinning idea is based on model selection
using the MML framework.



Chapter 7

MML model selection applied to
function approximation

7.1 Introduction

The previous chapters have focused on extending and using the MML framework for model selection
using probability distributions. Mixtures of probability distributions were used to model data dis-
tributed in the Euclidean space (Chapter 5) as well as data distributed on compact manifolds such
as spheres and tori (Chapter 6). In the context of mixture modelling, the model selection problem
refers to the inference of an optimal mixture that best describes the data. This entailed inferring the
number of mixture components as well as the mixture parameters. In this chapter, the MML inference
framework is applied to the problem of determining the optimal number of terms used in the infinite
series approximation of a periodic function.

Function approximation involves representing a target function using a combination of simpler
functions, that is, those whose mathematical forms are inexpensive to evaluate. The target function
could have a mathematical form which may not be trivially computed. Some well known examples
include the standard trigonometric functions, the exponential and the logarithm functions. These are
expressed as an infinite summation of simple terms. Functions such as the Bessel functions or the
normalization constant of an FB5 distribution (Equation 4.18) are relatively more complex. However,
even these are decomposed as simpler algebraic forms. Some examples of using finite series expansions
can be found in applications such as regression analysis and X-ray crystallography, where the number
of terms in the underlying mathematical functions has to be selected.

The target functions that generate the observed data are often unknown, in which case it is required
to approximate the function using the available data. The function that is considered a suitable fit
to the given data needs to be determined. In this chapter, the specific case of fitting the data using
regression analysis is discussed (Section 7.2). The method assumes an underlying data generation
process and minimizes the error to optimize for that process. As an example, it can be assumed that
the process corresponds to a polynomial whose coefficients are determined by optimally fitting the
known data to the polynomial function of some degree.

In this chapter, the regression analysis is carried out alongside function approximation using or-
thogonal basis functions, as discussed in Section 7.3. Specifically, the problem of linear regression is
considered where the target function is approximated by a linear combination of orthogonal functions.
Any periodic function may be decomposed as a linear combination of orthogonal basis functions. This
approximation leads to an infinite summation, and for practical purposes requires truncation to a
certain number of terms. Clearly, a longer series expansion results in improved goodness-of-fit. At the
same time, a longer series could be unduly complex. The trade-off is similar to the trade-off associated
with selecting an optimal number of components in the context of mixture modelling.

141
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The type of orthogonal functions considered in this chapter are the sines/cosines and Legendre
polynomials. These trigonometric functions correspond to the Fourier series decomposition of a peri-
odic function. The consideration of Fourier analysis is motivated by its widespread use in a number
of applications in sciences and engineering1. In particular, it plays an important role in X-ray crystal-
lographic studies, where the intensity values of the diffracted X-rays of crystallized protein molecules
are converted to 3D models using an inverse Fourier transform (Sherwood and Cooper, 2010), thus,
having direct implications in protein structural biology.

The problem of selecting the optimal number of terms in the series expansion of a function has
motivated the use of the MML framework. The encoding of the number of terms and their coefficients
in the expansion corresponds to the first part of the message. The second part of the message cor-
responds to the error resulting due to the use of this expansion. According to the MML framework,
the two-part message length is minimized, and the optimal number of terms in the expansion are
determined.

The previous literature on MML-based function approximation is limited to univariate polynomial
model selection. The MML framework to infer polynomials of suitable degree was first employed
by Wallace (1997). They compared the performance of the method with the contemporary state of
art (Cherkassky et al., 1997), and demonstrated that the MML-based method fares better. Further
research on the applicability of MML to polynomial regression was carried out by Viswanathan and
Wallace (1999) and by Fitzgibbon et al. (2002). A general linear regression analysis problem using the
MML framework was previously proposed (Wallace, 2005; Makalic and Schmidt, 2006; Schmidt and
Makalic, 2009). In this chapter, the linear regression analysis is employed to the problem of function
approximation using orthogonal basis functions.

The rest of the chapter is organized as follows: Section 7.2 introduces the regression analysis using
the MML framework. Section 7.3 briefly discusses the orthogonal basis functions, and the different
forms considered in this chapter. Finally, Section 7.4 presents an experimental evaluation where we
demonstrate how the regression analysis in conjunction with the MML framework framework is able
to select the optimal number of terms to be used in approximating a periodic function.

7.2 Regression analysis

7.2.1 Problem framework

Regression analysis is a statistical technique to study the relationship among variables. Given data
D = {(x1, y1), . . . , (xN , yN )}, comprising of N observations, the goal is to model the relationship
between the dependent variable y and the independent variable x. A regression problem refers to the
approximation (with minimal error) of the data with an assumed mathematical function.

Modelling these observations using a regression model is based on the belief that there is a target
function f that maps each xi to a corresponding function value f(xi) (Cherkassky et al., 1997).
However, in an experiment where the function values are recorded, there is often a measurement error
associated with each value. Hence, what are supposed to be exact function values are usually function
values with added noise. Each xi, therefore, has a corresponding noise altered yi value. Although it is
desirable to know the actual mathematical form that describes the data, in the absence of any extra
information and also because of the random noise involved, one can only approximate the given data
with an assumed function.

Given a set of data points, each observed yi is treated as a deviation from the true function value
f(xi), that is,

yi = f(xi) + δi (7.1)

where δi is the noise added to the ith function value. The noise is modelled as a random variable
sampled from a univariate Gaussian distribution with zero mean and standard deviation σ, that is,
δi ∼ N (0, σ2).

1https://en.wikipedia.org/wiki/Fourier_analysis
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The target function f(xi) is modelled by an assumed series expansion of the form g(xi,w) given
by

f(xi) ≈ g(xi,w) =
K∑
j=1

wjφj(xi) (7.2)

where w = {w1, . . . , wK} is the vector of weights, and φj , 1 ≤ j ≤ K are the basis functions. In this
chapter, φj are taken as orthogonal functions (Section 7.3), and, hence, f is modelled by their linear
combination. Such a formulation is referred to as the linear regression model. It is important to note
that φj itself could be a non-linear function. Hence, Equation 7.1 becomes

yi ≈ ŷi =
K∑
j=1

wjφj(xi) + δi, i = 1, . . . , N (7.3)

As δi is assumed to be a Gaussian random variable with zero mean, the error term yi − ŷi is also
normally distributed. This property is used to formulate the likelihood expression (Equation E.2).

The problem at hand is the determination of the optimal K for approximating a function using the
linear model for regression. The approximation by a linear combination of K basis functions yields
“a fit” to the data. The root mean squared error (RMSE) is a measure of the goodness-of-fit and is
computed as

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (7.4)

The RMSE decreases as the number of terms K in the approximating function increases. A greater
value of K would fit a model with reduced RMSE at the cost of increased complexity. This leads to the
problem of overfitting and, hence, the optimal balance that resolves the trade-off of model complexity
and the goodness-of-fit needs to be achieved. A related discussion about the variation in error while
approximating a function with increased number of orthogonal basis terms is available2.

7.2.2 MML approach

The MML framework is applied in the current context of function approximation. For a given number
of terms K in the series expansion of a target function (Equation 7.2), the message length formulation
comprises of two parts.

• First part, corresponding to the encoding of the parameters, namely, the weights w and the
standard deviation σ of the noise.

• Second part, corresponding to the encoding of the data, that is, the estimated values ŷi using
the parameters.

The formulation of the message length expression followed by a complete derivation of the MML
estimates of the parameters, based on the Wallace and Freeman (1987) approximation (Section 2.4.2),
is given by Wallace (2005). The derivation is included in Appendix E.1.

The minimization of the total message length over all possible values of K gives the optimal value
of the number of terms to be used in the approximation (Equation 7.2). It is expected that the
total message length would continuously decrease as K increases, until a minimum value is obtained,
and subsequently increases with increasing K. The value of K corresponding to the minimum total
message length is the optimal value at which the infinite series expansion should be truncated. This
problem is explored using orthogonal basis functions and, as specific examples, discussed for when the
basis functions are: (1) sines and cosines (Fourier decomposition), and (2) Legendre polynomials.

2http://allisons.org/ll/Maths/Orthogonal/
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7.3 Orthogonal basis functions

The orthogonal basis functions are real-valued functions defined on the domain [a, b] and which satisfy
the orthogonal property as discussed here. For functions φi and φj , let their inner product be defined
as

< φi, φj >=

∫ b

a
φi(x)φj(x)dx

and let the norm be denoted by ‖φj‖=< φj , φj >. The set of functions φj , {j = 1, 2, 3, . . .} are
said to be orthogonal if < φi, φj >= 0,∀ i, j such that i 6= j, and orthonormal if they are orthogonal
‖φj‖= 1∀ j.

The advantage of using orthogonal bases is that they facilitate the expression of functions as
linear combinations of the elements in the orthogonal bases set. As part of the regression problem
description, the unknown target function f is expressed as a series in terms of a set of simple functions
(Equation 7.2). The computation of the corresponding weights wj requires the solution to the resulting
linear regression problem with an objective to minimize the sum of squared errors (Equation 7.4).
Further, as detailed in Appendix E.1, the computation of the Fisher information becomes tractable
owing to the properties of the orthonormal basis functions (see Equation E.8).

Two separate orthogonal basis sets, corresponding to the decomposition of a function using (1)
trignometric functions (Fourier series), and (2) Legendre polynomials are considered in this section.

7.3.1 Fourier series

Fourier (1822) observed that any periodic function, possibly discontinuous, can be decomposed as an
infinite summation of a series of relatively simple functions of sines and cosines. Such a decomposition
using the sequence of sines and cosines refers to the Fourier series decomposition (Weisstein, a). Any
periodic function g(x) with a time period T can be represented using a Fourier series as

g(x) = a0 +
∞∑
j=1

(
aj cos

2jπx

T
+ bj sin

2jπx

T

)
(7.5)

where aj and bj are Fourier coefficients determined using the orthonormal property of the sines and
cosines, and are

aj =
2

T

∫ T

0
g(x) cos

2jπx

T
dx and bj =

2

T

∫ T

0
g(x) sin

2jπx

T
dx (7.6)

A Fourier decomposition can be treated as a specific case of the regression problem (Section 7.2.1),
where a periodic function is approximated by a linear combination of sines and cosines. Drawing
correspondences between the linear model for regression (Equation 7.2) and the Fourier decomposition
(Equation 7.5), note that the unknown target function f(x) is represented using the Fourier series.
Comparing the approximation of the target function f(x) ≈ g(x,w), given by Equation 7.2, with the
Fourier decomposition (Equation 7.5), the corresponding orthonormal basis set is

φj(x) =



1 if j = 1√
2

T
sin

(
jπx

T

)
if j is even√

2

T
cos

(
(j − 1)πx

T

)
if j > 1 and is odd

The approximating function g(x,w) is the linear combination of orthogonal functions φj ∀ j, which in
this case correspond to sines and cosines. The weights of the regression model w are related to the
sequence of coefficients {aj , bj}, ∀ j in the Fourier expansion.
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As the Fourier expansion includes an infinite series, the number of terms K at which the series
needs to be truncated is determined previously as discussed in Section 7.2.2. The weights inferred as
part of the regression analysis, will differ from the true Fourier coefficients because the infinite series
is truncated using the first K terms, and also because of measurement error in the form of random
noise.

The current analysis pertains to the decomposition of a periodic function using the above men-
tioned orthogonal basis functions. Some periodic functions considered herein are the sawtooth, square,
triangle, and parabolic functions. Note that the sawtooth and square functions are discontinuous.
However, their analysis is still possible for piecewise-continuous functions, within the domain where
the individual functions are continuous. This domain is characterized by the time period T of each of
the functions (also referred to as waveforms).

The following examples are provided to illustrate the various forms of the periodic functions con-
sidered in our analysis; their infinite Fourier expansions are also given alongside, with the true coeffi-
cients computed using Equation 7.6. The periodic functions, namely, sawtooth, square, triangle, and
parabola are considered here with their characterizing peak values at 1 and a time period of T = 2.

In these examples, the true periodic functions and their infinite series expansions are approximated
to a finite number of terms in the Fourier expansion as demonstrated below. Their respective functional
forms and one of their Fourier approximations, with a fixed j are shown below. In these examples,
the series is truncated at j = 3, corresponding to K = 7 terms (as per Equation 7.5).

1. Sawtooth

g(x) =


x

T
if 0 ≤ x < T

g(x− T ) if x ≥ T
f(x+ T ) if x < 0

g(x) =
1

2
− 1

π

∞∑
j=1

1

j
sin

(
2jπx

T

)
(7.7)

(a) Waveform
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(b) A Fourier approximation with j=3

Figure 7.1: Sawtooth function & its Fourier approximation

2. Square

g(x) =



+1 if 0 ≤ x < T
2

−1 if T
2 ≤ x < T

g(x− T ) if x ≥ T
g(x+ T ) if x < 0

g(x) =
4

π

∞∑
j=1,3,5,...

1

j
sin

(
2jπx

T

)
(7.8)
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(a) Waveform
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(b) A Fourier approximation with j=3

Figure 7.2: Square function & its Fourier approximation

3. Triangle

g(x) =



4x

T
if 0 ≤ x ≤ T

4

4

T

(
T
2 − x

)
if T

4 < x < 3T
4

4
(
x
T − 1

)
if 3T

4 ≤ x ≤ T
g(x− T ) if x ≥ T
g(x+ T ) if x < 0

g(x) =
8

π2

∞∑
j=1,3,5,...

(−1)
j−1
2

j2
sin

(
2jπx

T

)
(7.9)

(a) Waveform
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(b) A Fourier approximation with j=3

Figure 7.3: Triangle function & its Fourier approximation

4. Parabolic

g(x) =


4

T

(
x− T

2

)2
if 0 ≤ x ≤ T

g(x− T ) if x > T

g(x+ T ) if x < 0

g(x) =
1

3
+

4

π2

∞∑
j=1

1

j2
cos

(
2jπx

T

)
(7.10)
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(a) Waveform
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(b) A Fourier approximation with j=3

Figure 7.4: Parabolic function & its Fourier approximation

7.3.2 Legendre polynomials

The Legendre polynomials were first introduced by Legendre (1785). The series of functions, including
the recurrence relation to obtain higher order basis functions, are given below (Weisstein, b).

φj(x) =



1 if j = 1

x if j = 2

3x2 − 1

2
if j = 3

(2j − 3)xφj−2(x)− (j − 2)φj−3(x)

j − 1
if j > 3

The Legendre polynomials are considered here in order to provide a contrast to the orthogonal basis of
sines and cosines. The Legendre polynomials are orthogonal in the range [−1, 1]. The determination
of the optimal number of terms to approximate a target function using Legendre polynomials is
done under the MML framework. The approximations are discussed with respect to the previously
considered periodic functions, that is, the sawtooth, square, triangle, and parabola waveforms. As
Legendre polynomials are orthogonal in the range [−1, 1], the domain of the periodic functions is also
between -1 and 1. The functions considered have a peak value of 1 and a time period T = 1. The
respective functional forms and their approximations using the first 7 terms in the sequence are shown
in Figure 7.5.

7.4 Experimental evaluation

The following set of experiments demonstrate the ability of the MML framework to identify the number
of orthogonal basis functions in the approximation of a periodic function. The function approximation
problem is treated as a linear regression problem involving K terms, whose parameters are inferred
by MML estimation. Further, the MML criterion is used in determining an optimal K by formulating
a two-part message length that includes the encoding cost for the regression parameters and the cost
of encoding the data using those parameters (corresponding to the error in regression analysis).

For each of the periodic functions, there are an infinite number of Fourier approximations possi-
ble depending on the terms in their corresponding Fourier series. As discussed previously, a higher
number of terms (K) results in a better fit (least approximation error) but at the cost of increased
complexity of the fit. For each periodic function, data is generated randomly and, to each data
sample, random noise is added (see Equation 7.1). The experiment is run for different values of the
number of data samples N and varying values of the standard deviation σ of the noise. Each set
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Figure 7.5: Approximations of the periodic functions using the first 7 Legendre polynomials

of (N, σ) constitutes an experimental setup. The values of N considered are {100, 1000, 10000} and
σ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

For each experimental setup, the two part message length is computed for different number of
terms K. Each value of K requires the estimation of parameters (w, σ). The parameters and the data
given those parameters are encoded as discussed in Appendix E.1. The combined message length is
computed and minimized to give the MML estimates ŵ, σ̂ (Equation E.7). Using these estimates, the
two parts of the message are computed using Equations E.5 and E.6 respectively. These are plotted
individually along with the total message.

7.4.1 Regression fit using sines & cosines as orthogonal basis

The results for regression analysis and subsequent periodic function approximation using sines and
cosines are illustrated in Figure 7.6. The results are plotted for N = 1000 and a standard deviation
of noise σ = 0.2. The plots show the comparison of message lengths (part 1 & part 2) for K ranging
from 1 to 100.

A common trend that can be observed in the plots corresponding to the various periodic functions
in Figure 7.6 is that as the K increases, the statement cost of the parameters (part 1: red curve)
steadily increases. Also, the statement cost of the data given the parameters (part 2: blue curve)
decreases. The first part corresponds to the model complexity (explanation of the parameters) and
the second part corresponds to the fit (error in approximation). The total message length (green
curve), however, first decreases, reaches a minimum and then steadily increases. This shows that
a complex model (with large K) need not be the best choice to model a set of observations. This
addresses the tradeoff that arises from choosing a model against the associated error.
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Figure 7.6: Regression fit using Fourier series

The drop in the total message length is abrupt for the triangle and parabolic waveforms as com-
pared to the sawtooth and square functions. This is because, the weights of the orthogonal functions
that are inferred correspond to the Fourier coefficients of the respective waveforms. For the sawtooth
and square waves, the Fourier coefficients are inversely related to the order j (Equations 7.7 and 7.8).
The Fourier coefficients of the triangle and parabolic functions are, however, inversely related to j2

(Equations 7.9 and 7.10). Hence, the magnitude of the coefficients of the corresponding orthogonal
functions decreases rapidly for the triangle and parabolic waveforms. This leads to a steep fall in the
prediction error. As it can be seen, the encoding length of the first part is similar for all the four
functions but the second part encoding has a sharp decrease early on.

The coefficients corresponding to the sine terms are non-zero in the case of Fourier decomposition
of the sawtooth function. The corresponding coefficients of the cosine terms are zero (Equation 7.7).
Hence, the weights inferred of the cosine terms, as part of the regression analysis, will be close to
zero. Therefore, the addition of a cosine term does not cause much reduction in approximation error
as the weight inferred of the additional term is nearly zero and, thus, the second part of the message
remains almost unaltered. The first part of the message, however, increases because this additional
weight needs to be communicated. As a result, the total message length remains almost the same over
successive values of the number of terms. A similar argument holds for the parabolic function whose
Fourier decomposition has the coefficients corresponding to the sine terms as zero.

The square wave, however, is approximated by sine terms of odd order (Equation 7.8). This means
that if the coefficient corresponding to K (an odd sine term is non-zero), the coefficients for the next
three terms in the sequence will be zeroes. Therefore, the second part of the message length does
not change significantly from K to K + 3. This behaviour is clearly visible for the square wave, in
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Figure 7.6(b). The characteristic zig-zag pattern (blue curve) implies the message length is constant
for a series of three consecutive K values. A similar argument holds for the triangle wave although it
is not clearly visible from the plot.

A similar trend in the plots is observed for different number of data samples N ∈ {100, 10000} and
for varying levels of standard deviations of noise σ ∈ {0, 0.1, 0.3, 0.4, 0.5}.

7.4.2 Regression fit using Legendre polynomials as orthogonal basis

The experimental setup for approximating using Legendre polynomials is similar to the previous case
of regression fit using sines & cosines as orthogonal basis. The results are discussed for a sample of N =
1000 generated from each of the periodic functions. The regression analysis involves approximating
the data using a series of Legendre polynomials. A comparison of the message lengths for the first 100
Legendre polynomials is shown in Figure 7.7. As before, depending on the number of terms considered,
the fit to the data varies. The optimal fit is determined using the MML criterion. The total message
length first decreases and then gradually increases. The lowest point refers to the value of the number
of terms at which the message length is globally minimum.
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Figure 7.7: Regression fit using Legendre polynomials

7.5 Summary

In this chapter, we showed how the MML inference framework can be used in function approxima-
tion. Specifically, the problem considered is identifying the number of terms at which an infinite
series expansion of a periodic function can be truncated. For data that is generated from a periodic
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function, MML-based analysis was used to estimate the parameters of the linear regression model.
With increasing number of parameters in the regression model, the model complexity increases due
to a proportional increase in the encoding cost of the parameters. Consequently, the fit to the data
improves. This corresponds to the second part of the message in the MML framework.

The application of the MML framework in regression analysis using orthogonal basis functions
demonstrates the ability of the inference framework to objectively address the trade-off due to model
complexity and the goodness-of-fit to the data. In the experiments carried out, it is observed that
the MML inference process is able to identify a truncation point that corresponds to the least total
message length.



Chapter 8

Modelling protein folding patterns
using Bézier curves

8.1 Introduction

The focus of all previous chapters was on extending and using the MML framework for its use in the
statistical inference of probability distributions. In this chapter, the inference framework is used in
the abstract representation of a collection of three-dimensional (3D) points by a series of non-linear
parametric curves. This problem is discussed here in order to provide a contrast between how the
generalized MML framework can be used in different scenarios: (1) statistical inference of probability
distributions, their parameters and the optimal number (in the case of mixture models), and (2)
modelling some observed data with abstract representations.

In both these scenarios, the goal is to distinguish between several competing hypotheses and
to select the optimal one. In the first case, the hypotheses were probabilistic models of either the
same type (for example, Gaussian) with different parameters, or of mixtures with different number of
components. In the second scenario, there are numerous combinations of parametric curves that can
be used as representations to model the given data. The MML criterion is used to select an optimal
representation, in this case, by formulating a two-part message, where the first part corresponds to
the cost associated with selecting a certain representation (model complexity), and the second part
corresponds to the goodness of fit to the data.

The data being modelled can be generic and may correspond to a collection of 3D points with
some observable non-linear geometry. As an application, protein structural data is considered because
the interactions between the constituent atoms result in proteins folding into complex 3D shapes
(Lesk, 2004). Additionally, modelling the protein coordinate data is a good case study as the resulting
representations can be leveraged in applications involving the identification of proteins with similar
structural properties.

Recall from Section 6.3.3, where we explained the basic backbone structure of a protein as a chain
of amino acid residues. These residues form a detailed representation of the protein structures at an
atomic level (see Figure 8.1a). However, such a representation does not yield much information about
the underlying geometric structure of proteins. It is a well established fact that proteins are described
using their secondary structure and are predominantly made up of α helices and β strands (Edsall
et al., 1966), shown in Figure 8.1(b). In literature studying the principles of protein architecture, the
focus has been mainly on studying arrangements of secondary structure elements (Louie and Somorjai,
1983; Barlow and Thornton, 1988; Chothia et al., 1981; Richardson, 1977) in folds. The essence of
protein folding patterns is captured by the geometry of their standard secondary structural elements:
helices and strands of sheet (Chothia and Finkelstein, 1990; Lesk, 1995). Therefore, most of the
methods exploring protein folding patterns involve abstraction of their protein 3D structures at the
level of secondary structure.

152
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(a) (b) (c)

Figure 8.1: Example representations of a protein structure at (a) the residue level, (b) secondary
structure level, and (c) an abstraction based on the secondary structure.

Simplified representations of folding patterns, like the ones at the level of secondary structures,
are tremendously useful to understand the architecture and topology of protein structures. They are
commonly achieved by replacing each secondary structure segment by straight lines (Chothia et al.,
1981; Cohen et al., 1981; Lesk, 1995). This has resulted in very useful and compact summaries of
protein folding patterns (see Figure 8.1c). With the rapidly growing world wide protein data bank
(wwPDB), simplified representations allow for the definition of efficient and effective methods for
large-scale search, alignment and classification, handling the whole corpus of structures.

Almost universally, current methods to represent protein folding patterns rely on secondary struc-
tural elements (Chothia et al., 1981; Cohen et al., 1981; Lesk, 1995). Although the representations at
the level of secondary structural elements are very useful and compact, they remain inconsistent and
lossy in terms of the structural information they capture (Levitt and Greer, 1977; Cuff and Barton,
1999). On average, the standard secondary structures account for 60-70% of globular protein chains,
leaving the structural information in the remaining 30-40% of the chain entirely ignored in such repre-
sentations. Thus is further exacerbated due to the lack of consensus in defining secondary structures
(Colloc’h et al., 1993).

As a result, the current state-of-the-art abstractions of protein structures at a secondary structural
level do not sufficiently capture the geometry of interactions within a protein structure. While a few
rigorous attemps have been made, none of them fully explain the geometric patterns satisfactorily
(Taylor et al., 1983; Richards and Kundrot, 1988; Sklenar et al., 1989; Dupuis et al., 2004; Majumdar
et al., 2005; Ranganathan et al., 2009).

A few methods have been proposed to abstract protein folding patterns that capture their essence
without discarding structural information (Taylor, 2001; Konagurthu et al., 2011). Mainly, these
methods summarize a given protein backbone using piecewise line segments. These representations are
independent of the notion of secondary structures and, hence, allow for the consideration of regions that
do not belong to the conventional classes of helices and strands (Taylor, 2001), the information that is
lost in abstractions at the secondary structure level. However, the main disadvantage of using piecewise
linear abstractions relates to the fact that structures are flexible and undergo plastic deformations in
protein evolution. Representing the protein backbone using rigid lines does not accommodate for the
flexibility and plasticity required to describe protein folding patterns concisely. The current work
addresses and rectifies this limitation.

The primary goal of any abstraction should be to maximize the economy of description of a protein
structure while ensuring that the essence of its folding pattern is retained (Taylor, 2001; Konagurthu
et al., 2011). In this chapter, a mathematically rigorous approach is proposed to represent any protein
structure using arbitrary order non-linear parametric curves. The approach relies on the information
theoretic based MML inference.
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We employed the MML principle to select the assortment of non-linear curves to best compress
the given protein coordinate data. While the method is applicable to any class of parametric curves,
this work specifically focuses on Bézier curves for their robustness in modelling regions of protein
structures effectively.

Bézier curves are smooth and continuous, and model the plasticity commonly observed in proteins.
These curves can be scaled to any order and are simply defined by their control points. The number
of control points determines the degree (or order) of the curve. A linear Bézier curve has two control
points and is of degree 1, a quadratic Bézier curve has three control points and is of degree 2, a cubic
Bézier curve is of degree 3 containing four control points and so on. In general, the first and last
control points of Bézier curves always lie on their respective curve. The intermediate control points
(where they exist) lie away from the curve. The freedom to move the intermediate control points give
Bézier curves their flexibility and, making them ideal to describe the observed plasticity in proteins.

Our method relies on dissecting (or segmenting) any given protein structure into non-overlapping,
variable-length regions (or segments), each of which is assigned to a Bézier curve of an arbitrary degree
(or complexity) consistent with the MML framework. Each segmented region in the dissection has a
statement cost corresponding to the amount of information (measurable in bits) required to losslessly
encode the coordinate information in that region, using its assigned Bézier curve as the model for
compression. (Hence, we use the term code length to define the information cost associated with each
dissected region.) Furthermore, a dynamic programming based search strategy is designed to find the
optimal dissection (and its corresponding Bézier curve assignment) that results in the shortest lossless
encoding of protein coordinates using an ensemble of Bézier curves, where each curve in the ensemble
defines a particular dissected region in the protein.

The details of the approach are elaborated in the following sections. Section 8.2 describes the
problem of representing the given data using Bézier curves in terms of the MML framework. The
section explains the mechanics involved in losslessly encoding the Bézier abstractions and subsequently
formulating a two-part message length to encode the data. Section 8.3 describes the method used to
determine the optimal Bézier abstraction by constructing code length matrices used to explain the
different protein segments. Section 8.4 evaluates the proposed approach. A case study is first presented
where a protein is segmented using Bézier curves based on the proposed method. In this example,
segmentations obtained by using different forms of Bézier curves (linear to cubic) are contrasted with
each other. These are also compared with traditionally used segmentation methods based on secondary
structure assignment. The experiments section further builds methods to compare protein structures
based on the resulting Bézier abstractions. These methods are evaluated against the commonly used
techniques to compare proteins.

8.2 Problem formulation using MML

In this problem, the data considered are the three-dimensional coordinates of a given protein P. Recall
from Section 6.3.3 that any protein is represented as the sequence (ordered list) of N three-dimensional
points {P1, . . . , PN}, representing the coordinates of the Cα atoms along the N- to C-terminus of the
protein chain.

A non-linear abstraction of P results in a dissection that is defined as a subsequence containing
k < N points from P denoted as Q = {Q1 ≡ Pi1 , Q2 ≡ Pi2 . . . , Qk ≡ Pik} such that 1 = i1 < i2 <
· · · < ik = N . Any successive pair of points (Qr, Qr+1)1≤r<k ∈ Q defines a contiguous region in the
protein structure whose end points are Qr = Pir and Qr+1 = Pir+1 . The term dissection is used
to indicate the collection of regions defined by Q. Associated with each region Qr · · ·Qr+1 in the
dissection is a Bézier curve of some degree θr with (Qr, Qr+1) acting as the start and end control
points of that curve. The remaining (θr− 1) control points are determined analytically by minimizing
the total least squares errors of the set of points in that region with respect to the Bézier curve.

Translating the problem to the MML context, any dissection Q (and its corresponding Bézier curve
assignment) denotes a model, that aims to concisely summarize a given protein structure. The best
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dissection in this framework is the one that gives the shortest encoding (that is, the best compression)
of the entire set of coordinates in P, over all possible models to describe P. However, unlike in the
previous Chapters, we cannot directly employ the Wallace and Freeman (1987) method. We previously
modelled the data using probability distributions and their mixtures. In those cases, we were able to
explicitly compute the Fisher information that determines the precision of the model’s parameters,
which is integral to inference as per Wallace and Freeman (1987)’s method (see Section 2.4.2).

In the current context, we have a model defined as a sequence of Bézier curves of varying order.
The parameters of the model include the number of curves, the degree and control points of each curve
in the sequence. The Fisher information in this context is not explicitly computable, and thus, we
cannot use Wallace and Freeman (1987)’s method. However, the general idea of the MML principle
rationalized as a communication framework can still be applied. As described in Section 2.4, the
communication of data between a hypothetical transmitter and receiver pair involves encoding the
model and then the data using the model. The total message length can vary depending on the
complexity of Q and how well it can explain P. A more complex Q may fit P better but takes more
number of bits to be stated itself. The trade-off comes from the fact that the transmission process
requires the encoding of both the model Q and the data given Q, that is, the model complexity I(Q)
and the goodness-of-fit I(P|Q).

8.2.1 Encoding the model: First part in the MML framework

The first part of the transmission process involves communicating the model, that is, the dissection
Q containing k segments and its corresponding Bézier curve assignment. This is achieved using the
following steps

1. Transmit the number of segments: A variable length integer code, namely the Elias omega code
(Elias, 1975), is used to encode k. This takes log∗ k = log k + log log k + · · · (over all positive
terms) bits to encode k.

2. Transmit the end points: The end point of the previous segment in any dissection is also the
start point of the current one. (The first segment is a special case where the transmission of
the start point can be avoided if the coordinates in P are translated such that P1 is always the
origin.) The coordinates of the end point of each segment are three real numbers of the form
(x, y, z). To transmit these coordinates a bounding box is specified using (xmin, ymin, zmin) and
(xmax, ymax, zmax) which can be determined from the set of all coordinates. Each end point can
be stated in log V bits, where V = (xmax − xmin)× (ymax − ymin)× (zmax − zmin) is the volume
of the box. Hence, to encode the k end points requires a statement cost of k log V bits.

3. Transmit intermediate control points: Associated with any segment Qr ≡ Pi · · ·Qr+1 ≡ Pj is
a Bézier curve of degree θr, containing θr − 1 intermediate control points. The degree θr is
an integer and takes log∗ θr bits to encode. The spatial positions of the control points are
stated using the bounding box approach described above. The length of encoding the (θr − 1)
intermediate control points associated with each segment is (θr − 1) log V bits.

Adding each of the above contributions to the message length required for the first part, the encoding
cost of the model is given as

I(Q) = log∗(k) + k log V +

k∑
r=1

(log∗ θr + (θr − 1) log V ) (8.1)

8.2.2 Encoding the data given the model: Second part in the MML framework

The second part of the message consists of transmitting the remaining protein coordinates, given the
dissection (and assigned Bézier curves) as the model. This is achieved using the following steps
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1. Transmit the number of internal points within a region: For segment r between Pi and Pj , there
are j − i − 1 internal points that need to be encoded using the assigned Bézier curve as their
model of compression. Again, the same integer encoding described previously is used taking
log∗(j − i− 1) bits.

2. Transmit the coordinates of the internal points: Given the receiver knows the dissection and its
assigned Bézier curves, the internal points corresponding to any segment can be explained as
a set of three spatial deviations with respect to its curve. Using these deviations, the receiver
can precisely locate (to the stated precision) the position of the internal protein residue. The
three sets of spatial deviations are transmitted over a probability distribution, the parameters
of which need to be encoded as part of the transmission.

Figure 8.2: Deviations of the internal points of a region with respect to the assigned (cubic) Bézier
curve.

Figure 8.2 illustrates the encoding of this part. Let Cij be the curve that abstracts the protein segment
between Pi and Pj . This curve is used in conjunction with a plane to explain the internal points that
lie between Pi and Pj . To build the plane, consider three non-collinear points Pi, Pj and the first
intermediate control point (if it exists) of the assigned Bézier curve. If no such control point exists
(that is, when the assigned Bézier curve is of degree 1), use Pi+1 (and transmit it using the bounding
box approach).

Computation of deviations

Figure 8.2 shows two internal points Pm−1 and Pm within a segment defined by Pi and Pj as its end
points. A plane is defined for this segment using Pi, Pj , and CP1. Each internal point is associated
with three spatial deviations that are computed as

1. Deviation 1: The first deviation is the orthogonal projection of the internal point onto the
defined plane. The foot of the perpendicular line from Pm onto the plane is denoted by Fm. The
length of this projection is denoted by a signed deviation δm,1. The sign is determined by the
orientation of the Pm with respect to the plane (that is, above or below defined by the normal
vector n̂ of that plane).
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2. Deviation 2: The second deviation denotes the shortest distance from the foot of the perpen-
dicular Fm, to the Bézier curve Cij assigned to this region.1 Let Gm denote the projection on
the curve which results in the shortest distance. The length of this projection is given by the
signed deviation δm,2. The sign is determined by the orientation of Fm with respect to the plane
formed by the tangent at Gm and the normal n̂.

3. Deviation 3: Every point on the Bézier curve, including Gm, is parameterized using t in the
range [0, 1]. Let t∗m be the parameter of Gm. Similar to the projection Gm of Pm, the previous
intermediate point Pm−1 has an associated projection Gm−1. Let t∗m−1 be the parameter corre-
sponding to Gm−1. The third deviation is the offset of Gm from Gm−1, whose sign is given by
the position of t∗m with respect to t∗m−1.

Encoding the deviations

For the segment r between Pir and Pjr in the dissection, let the number of points whose deviations
needs to be transmitted be nr = jr − ir. Each of these nr points has three spatial deviations. Let
δr1, δ

r
2, and δr3 correspond to the set of the first, second, and third spatial deviations respectively, that

is, δrp = {δr(i+1,p), δ
r
(i+2,p), . . . , δ

r
(nr−1,p)} for p = {1, 2, 3}. These sets of deviations are explained using

a probability distribution. The communication of these sets of deviations over this distribution will
require the transmission of the parameters of the distribution, followed by the encoding of the observed
deviations using that distribution.

In the current context, each set of deviations is encoded using a univariate Gaussian distribution.
The parameters of the distribution which result in the minimum message length to encode the data are
inferred using the Wallace and Freeman (1987) method and the resultant expression for message length
to encode any set of deviations (δrp) is given by the following formula (corresponding to Equation 2.9):

Iδrp = 1 + log κ2 + log(RµRσ) +
1

2
log(2n2

r) +
nr
2

log

(
2π

ε2

)
+
nr − 1

2
log

(∑nr
i=1(δr(i,p) − µ̂p)2

nr − 1

)
+
nr − 1

2

where µ̂p =
1

nr

nr∑
i=0

δ(i,p) is the MML estimate of the mean of the distribution, and κ2,RµRσ, ε are

hyperparameters used in MML inference2 (see Section 2.4.3). Hence, the statement cost to encode the

coordinates of any segment r between points Pir and Pjr is given by Iδr = log∗(nr) +

3∑
p=1

Iδrp .

8.2.3 Total cost of communicating the coordinates using Bézier curves

Given the dissection Q (model) of the coordinates P (data), let the total message length required to
explain the data be denoted as I(Q& P). Combining the code lengths to state the two part message
described in Sections 8.2.1 and 8.2.2, the total message length expression is given as

I(Q& P) = log∗(k) + k log V +

k∑
r=1

(log∗ θr + (θr − 1) log V )︸ ︷︷ ︸
first part: I(Q)

+

k∑
r=1

Iδr︸ ︷︷ ︸
second part: I(P|Q)

This equation serves as the objective function that must be minimized to obtain the optimal represen-
tation. Noting that log∗(k) is very small and is significantly less than k log V , this term is ignored to
construct a slightly modified objective. The advantage of this modified objective is that it is strictly

1The details of this computation are described in Appendix F.1.
2Recall that κ2 is the lattice quantization constant, Rµ, Rσ appear in the prior density of the Gaussian parameters,

and ε is the accuracy of measurement (for protein coordinate data, ε = 0.001 Å).
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additive in terms of the code lengths corresponding to each individual segment in any dissection of
the proteins into Bézier curves. More specifically,

I(Q& P) ≈ Ĩ(Q& P) =
k∑
r=1

`θrij

where `θrij = θr log V + log∗(θr) + Iδr (8.2)

and `θrij denotes the component code length required to explain the coordinates in the region between
P ri and P rj in the dissection, using a Bézier curve of degree θr.

8.3 Optimal Bézier segmentation using dynamic programming

The total message length expression formulated in Section 8.2.3 sets up the search problem of finding
the dissection Q∗ of a set of coordinates of protein P such that the encoding length of P using Q∗, that
is, I(Q∗ & P) is the minimum over the entire space of possible dissections. This section will describe
the procedure to compute the optimal dissection Q∗ and its associated Bézier curve assignment for
the given protein coordinate data P = {P1, . . . , PN}.

Potentially, every pair of points Pi and Pj , 1 ≤ i < j ≤ N defines a candidate region that the
optimal dissection Q∗ could include. Also, associated with each candidate region is the assignment of
a specific Bézier curve of arbitrary degree θ.

In order to search for the best dissection, an ensemble of code length matrices `θ = (`θij) ∀ 1 ≤ i <
j ≤ N , one for each degree θ = {1, 2, 3, · · ·} of the family of possible Bézier curves, is constructed.3

Each `θij contains the code length to encode the coordinates of the region Pi · · ·Pj , using a Bézier
curve of degree θ.

The ensemble of code length matrices `θ is then used to search for the best dissection Q∗ and its
corresponding Bézier curve assignment. As described in Section 8.2, the goal is to find the dissection
that yields a globally minimum message length, I(Q∗ &P), to encode the coordinate data. Given the
property that the code lengths to encode individual segments of any dissection are strictly additive
(see Equation 8.2), the best dissection can, therefore, be derived using a one-dimensional dynamic
program (Bellman, 1957) with the following recurrence relationship (starting from the boundary value
C1 = 0)

Cj =
j−1

min
i=1

{
minθ `

θ
1j

(Ci + minθ `
θ
ij)

, ∀ 1 ≤ j ≤ N

where any Cj gives the optimal dissection from P1 up to some intermediate point Pj (1 < j ≤ N).
Note that the above recurrence ensures that the optimal dissection of coordinates P1 to Pj is built
incrementally using the optimal dissection of its sub-problems defined by P1, · · · , Pi,∀ 1 ≤ i < j < N ,
using the ensemble of code length matrices which are precomputed before the search begins. At the end
of the recurrence, the value CN corresponds to the minimum message length I(Q∗&P) corresponding
to the optimal dissection of P1, . . . , PN . This dissection and the corresponding Bézier curve assignment
(which are memoized in order to speed up the process when computing each Cj) can be computed by
backtracking (Bellman, 1957) along the array of dynamic programming history values given by C.

3In practice, only three matrices are considered, by restricting the degree of Bézier curves to at most three. Note that
the ensemble of linear, quadratic and cubic Bézier curves are sufficiently powerful to explain the observed plasticity in
protein structures.
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8.4 Experimental analyses

8.4.1 Case study: dissection of regions of Ubiquitin-like domain of human homo-
logue A of Rad23 protein

The approach described above to obtain the dissections of a given protein structure is illustrated using
the (randomly chosen) Ubiquitin-like domain of Human homologue A of Rad23 protein (Chen et al.,
2011) with wwPDB code 2WYQ. The generated representations derived from the above approach
are compared and contrasted with the traditional representations at the level of secondary structural
elements.

Figure 8.3(a) shows the structure of 2WYQ with standard secondary structures – helices and
strands of sheet, assigned using DSSP (Kabsch and Sander, 1983). In the traditional approach to
abstracting protein folding patterns, the secondary structural elements are replaced by line segments
(Shi et al., 2009; Konagurthu et al., 2008). This is shown in Figure 8.3(b). Notice that in excess of
50% of the structure is omitted as they do not partake in forming local secondary structural features.
As a result, the representation remains lossy.

Figure 8.3(c) shows three dissections of 2WYQ produced by our approach described above, by
varying the maximum degree of Bézier curves used to dissect the protein. In the left frame of the figure,
we constrain the approach to utilize only the linear order (degree=1) Bézier curves. This results in a
piecewise linear abstraction of the protein folding pattern. This representation is equivalent to those
produced by STICKS (Taylor, 2001) and PMML (Konagurthu et al., 2011). However the strength of
the methodology described in this paper is that our method can be generalized to higher order curves,
with the piecewise linear approximation being the limiting case. The middle frame of Figure 8.3(c)
shows the dissection when the available models include both linear (degree 1) and quadratic (degree
2) Bézier curves. The right frame of the figure further extends this model set to include cubic Bézier
curves (degree 3).

Discussion on the generated Bézier abstractions

To understand the quality of the dissections produced under varying constraints on the degree of
Bézier curves, the dissections corresponding to maximum degree 1 and maximum degree 3 (that is,
each dissected region in the protein can be of either degree 1, 2 or 3) reported in Figure 8.3(c) are
compared with each other. These two dissections will be henceforth referred to as linear and non-linear
Bézier abstractions respectively.

The linear Bézier abstraction yields 8 segments while the non-linear Bézier abstraction results in 7
segments. These segments are individually shown in Figures 8.4 and 8.5 respectively. (There are two
more segments but as they are only two residues long; these will be ignored in the discussion below).
Noteworthy aspects of the two abstractions are

• Segment 1 corresponds to a strand of a four-stranded anti-parallel β-sheet in 2WYQ. This
strand shows a mild curvature (see Figure 8.4a). The non-linear abstraction suitably captures
this curvature using a quadratic Bézier curve (Figure 8.5a).

• Segment 2 corresponds to the anti-parallel strand with respect to the first, and shows a mod-
erate curvature. The linear Bézier abstraction introduces a poorly fitting line segment (see
Figure 8.4b), while the non-linear Bézier abstraction chooses a well fitting quadratic Bézier
curve to explain that region (see Figure 8.5b).

• Segment 3 comprises mainly of a helical region whose terminal regions are flanked by loops.
Demonstrating the economy of abstraction, the non-linear Bézier abstraction models this region
using a cubic curve (see Figure 8.5c). In stark contrast, the linear Bézier abstraction models
the region using a poorly fitting line segment (see Figure 8.4c), thereby losing the information
of the curvature in that region.
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(a) (b)

(c)

Figure 8.3: (a) Structure of Ubiquitin-like domain of human homologue A of RAD23 (wwPDB code
2WYQ) shown with standard secondary structures – helices and strands of sheet assigned using the
DSSP software tool (Kabsch and Sander, 1983). (b) Traditional representation of the folding pattern
which replaces each secondary structural element with line segments. (c) The representations produced
by the MML approach by constraining the Bézier curves to a maximum degree of 1 – Linear (left
frame), maximum degree of 2 – Linear and Quadratic (middle frame), and maximum degree of 3 –
Linear through to Cubic (right frame).
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Figure 8.4: Linear Bézier curve abstractions of
2WYQ.

Figure 8.5: Non-linear Bézier curve abstractions
of 2WYQ.

• Segment 4 has a linear trend and, hence, both dissections model this region using a line segment
(see Figures 8.4d and 8.5d).

• Segment 5 is a coil and this is approximated using a quadratic Bézier curve in the non-linear
abstraction (Figure 8.5e). The linear abstraction, however, models this region partially using
two line segments (see Figure 8.4).

• Segment 6 in the non-linear abstraction (Figure 8.5f) comprises of a coil and a β strand. This
combination is described in the non-linear abstraction using a single quadratic Bézier curve.
The linear abstraction for this segment results in two segments – a part of the coil belongs to
segments 6 and the beta sheet is represented as a line, as shown in Figures 8.4(f) and (g).

Comparison of the Bézier abstractions with secondary structural segmentations

The non-linear Bézier abstraction is now compared with the representation of folding patterns using
secondary structures. Several comparative studies have highlighted the poor consensus among popular
secondary structural assignment programs (Colloc’h et al., 1993). We consider the two radically
different programs to assign secondary structures to protein coordinate data: DSSP (Kabsch and
Sander, 1983) and SST (Konagurthu et al., 2012). The coordinates of 2WYQ were passed through
DSSP and SST and the resulting segmentations are used to represent the backbone of this structure
as a set of vectors (by replacing the secondary structural elements with line segments; see Figures 8.6
and 8.7). Using both these methods a major portion of the protein folding pattern goes unrepresented.
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Figure 8.6: DSSP segmentation of 2WYQ. Figure 8.7: SST segmentation of 2WYQ.

Of the 77 residues, the segmentations generated using DSSP and SST result in representing 37 and
44 residues respectively, which is only ∼ 48% and ∼ 57% of the whole region.

Visual inspection of the Figure 8.3 reveals that the secondary structural elements in 2WYQ depart
considerably from their ideal geometries and hence the line segments approximating these regions, for
both the approaches, show significant errors. In contrast, our non-linear abstraction results in a well
defined abstraction that closely approximates the folding pattern of 2WYQ. This case study and many
others that were carefully examined manually (two of which are presented in Appendix F.2) validates
the effectiveness of the non-linear Bézier abstractions produced by the proposed approach. It uses an
elegant and mathematically rigorous approach to achieve the objective of maximizing the economy of
description, while at the same time minimizing the loss of structural information.

8.4.2 Fold identification using Bézier abstractions

As a proof of concept, a simple-minded strategy is designed here to compare and score the similarity
between any two abstractions generated by the proposed approach.

Given any dissection of a protein structure, a geometric profile is created, and is used in comparison.
The basic idea here is that the sequences of geometric profiles of two proteins sharing similarity in
their folding patterns would also be similar. This allows the use of the rich repertoire of sequence
comparison methods to efficiently undertake large scale comparisons of protein folding patterns.

For a given Bézier curve dissection, the geometric profile is generated as follows: for every region
in the dissection, each intermediate control point of the Bézier curve is projected onto the curve.
The projection is the point on the curve that is closest to the control point. These projections are
connected to the end points, thus, forming a series of line segments. Since any two skew lines have a
mutually perpendicular vector, the angle required to rotate one line about this perpendicular axis so
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that it eclipses the other line gives an orientation angle in the range [0◦, 360◦]. A table of orientation
angles are recorded for each pair of line segments. In addition to the orientation angles, the distances
between the mid-points of each pair of lines are also recorded. The row-wise concatenation, of all
possible orientation angles and the corresponding distances between lines results in a sequence of
2-tuples representing a simple geometric sequence profile of the protein.

For comparing two dissections, their representative geometric profiles are compared by their align-
ment. Any two geometric profiles are aligned by implementing the standard affine-gap version of
dynamic programming algorithm to compare pairs of sequences. An ad hoc scoring function is used to
score matches in the alignment. Specifically, the score of aligning any two angles wi and wj and the
corresponding distances r1 and r2 between the midpoints of the interacting line segments is given by

score(wi, wj) = (45◦ −∆w) exp

(
−∆r2

c2

)
where ∆w = min{|wi − wj |, 360◦ − |wi − wj |}, ∆r = |r1 − r2| is difference of the two distances, and
c is a constant which is set to 20 Å. With this new scoring function, the alignments are recomputed.
The resultant alignment score derived by aligning any two geometric profiles is normalized as

Ŝ(A,B) =
S(A,B)

0.5× (S(A,A) + S(B,B))
(8.3)

where S(A,B) is the optimal score; S(A,A) and S(B,B) are the respective self-alignment scores. In
summary, in order to compare any two Bézier segmentations, their geometric profiles are generated
and their sequence alignment is carried out.

Using the Bézier segmentation profiles for fast database search

The applicability of Bézier segmentations is demonstrated by using them to achieve efficient and
accurate database search and retrieval. To do so, Bézier segmentations are used initially as a screening
filter to identify a small candidate set of proteins from the database, that are most likely to be
structurally similar to the query. We then run sophisticated (and time consuming) structure alignment
programs to accurately match the query with each of the candidate structures in this small set. Clearly,
such an approach can save significant amounts of computation time without losing accuracy, if the
filtering method is effective. The following experiments assess the effectiveness of a filtering method
based on Bézier segmentations.

The dataset considered is the entire ASTRAL-SCOP 40 (version 1.75) database containing 11,146
domain structures (Murzin et al., 1995). The structures are categorized into 1,188 distinct folds and
7 distinct classes. It is to be noted that that no two domains in this dataset share more than 40%
amino acid sequence identity. SCOP is a classification hierarchy of the protein domains. The hierarchy
consists categories of protein domains that are categorized at the family, superfamily, fold, and the
class levels. The domains belonging to the same family are closely related protein structures. Given
a query domain, we wish to identify other domains with the same fold type as that of the query. This
refers to searching for strutures with similar folding patterns. If we perform the search at a class level,
we are searching for structures that belong to the same class.

The experiment proceeded as follows: five structures (queries) were selected initially by identifying
the most common five folds types in the database (that is, those present in more structures) and then
randomly selecting a structure for each fold type. The queries used in this experiment are listed in
Table 8.1. Once the five queries were selected, the geometric profile of each query was aligned with the
geometric profile of each of the 11,146 structures in the database, and the resulting alignment scores
were used to rank the structures.

The structures at the top of the ranked list are expected to be the most similar to the query
structure. The top k % (cutoff point) structures are filtered for varying values of k (0, 5, 10, . . . , 100)
and are considered to have a fold identical to that of the query. The false positive rate (FPR) and
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true positive rate (TPR) at each of these cutoff points are computed. These values are plotted and a
Receiver Operating Characteristic (ROC) curve is generated which is used to establish the accuracy
of the filtering method. The closer the curve is to the diagonal, the less accurate is the test. The area
under the ROC curve (AUC) is, therefore, a direct measure of this accuracy.

Table 8.1: Description of the five queries selected.
Fold type Fold description Query Query domain

a.4 DNA/RNA binding-3-helical bundle d2hosa a.4.1.1
b.1 Immunoglobulin-like β-sandwich d1l6za1 b.1.1.1
c.1 TIM β/α-barrel d1w0ma c.1.1.1
c.2 NAD(P)-binding Rossman-fold d1gu7a2 c.2.1.1

d.58 Ferredoxin-like d2fdna d.58.1.1

Table 8.2: Area under the curve (AUC) values when evaluated at the fold and class levels.

Query
AUC AUC

(fold level) (class level)

d2hosa 0.87 0.74
d1l6za1 0.83 0.67

d1w0ma 0.92 0.80
d1gu7a2 0.81 0.78
d2fdna 0.82 0.58
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Figure 8.8: ROC curves for the fold level evaluation. The corresponding AUC values are tabulated
in Table 8.2. The red dots in each ROC curve denotes the (TPR,FPR) value at a cutoff points
(k=0,5,10,. . . ,100).

The TPR and FPR metrics are computed by evaluating the ranked list on the basis of fold similarity
or class similarity as described previously. The folds are considered to be similar when the fold type
of the query matches those in the ranked list. The class level similarity is when both the query and
each of the domains in the ranked list belong to the same class. The values of TPR and FPR are
calculated for both the cases and the corresponding results are shown in Table 8.2. The ROC curves
for the query domains are shown in Figure 8.8.

It is observed that the accuracy of the test is greater when the discrimination between structures
is at the fold level. The fold level discriminative ability provided by the Bézier segmentation profiles
suggest that this method can be used to identify similar folds and hence, can be used in the initial
screening of a database of structures. Once the candidate structures are filtered out, these can be
scrutinized more thoroughly to find the structure with identical folding pattern as the query.
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8.4.3 Comparison of our fold-identification method with others

Comparison with protein alignment methods

As discussed in Section 8.4.2, the geometric profiles constructed using the Bézier dissections can be
used to compare the protein structures. It is expected that proteins that are structurally similar would
have similar Bézier dissections and consequently similar geometric profiles. As a result, when their
geometric profiles are aligned, they would have a relatively higher alignment score (Equation 8.3).
This can be validated by using the existing protein alignment methods. The resulting alignments of
protein structures using the existing methods are also expected to have a higher alignment score. The
similar pattern is observed when structurally dissimilar proteins are considered, in which case, the
alignment scores would be relatively lower. We demonstrate this behaviour here.

A quantitative assessment of the Bézier abstractions generated by our approach is demonstrated
by undertaking a large scale comparison between protein structures abstracted using our proposed
approach. These structures are chosen such that they vary across the entire spectrum of structural
relationships. Specifically, we randomly choose a data set containing 500 domains from the ASTRAL
SCOP 40 (version 1.75) database (Murzin et al., 1995). Let these selected domains be referred to as
pivots. Corresponding to each pivot domain, five distinct domains (differing in length by no more than
50 residues with respect to the pivot) are randomly chosen, such that the first belongs to the same
SCOP family as the pivot, the second belongs to the same SCOP superfamily (but not family), the
third belongs to the same SCOP fold (but not family or superfamily), the fourth belongs the same
SCOP class (but not any better) and the fifth belongs to an entirely different SCOP class (the decoy).

Geometric profiles of the non-linear Bézier curve abstractions (see Section 8.4.2), are generated for
each of the 2500 (= 5× 500) SCOP domains in this data set. The geometric profiles of the 500 pivot
domains are aligned separately with each of its 5 associated domains. A box-whisker plot is constructed
to show the variance in the normalized alignment scores at each level in the SCOP hierarchy.

To serve as a gold standard, the same data set is aligned using the commonly used protein alignment
methods, such as DALI (Holm and Sander, 1993), Matt (Menke et al., 2008), and TM-align (Zhang
and Skolnick, 2005). The value of the scoring function for each method is used to generate a Box-
Whisker plot showing the variability under this scoring function. The plots are shown in Figure 8.9.

A good discriminative scoring function should result in a box-whisker plot where the median
values of alignment scores decreases monotonically as the structures being compared diverge in their
evolutionary (structural) distance along the SCOP hierarchy: family, superfamily, fold, class, and
decoy. Examining these plots, all the alignment methods show this behaviour. At the levels of SCOP
family, superfamily and fold, the discrimination achieved using DALI and our proposed approach
remains comparable. However, as expected of residue-residue comparisons, DALI is significantly better
at the levels of Class and Decoy. This accuracy of DALI comes at a heavy computational cost.

DALI takes about ∼ 12 hours to compute all the 2500 alignments in the data set we considered. In
contrast, it only takes us ∼ 15 minutes to compare the geometric profiles. This excludes the one-time
preprocessing cost of computing the geometric profiles of the source structures in the collection.

Furthermore, the standard scores of the normal distribution (z-scores) for the DALI alignments
are compared with the z-scores for the raw alignment scores produced by the proposed method. To
compute the z-scores corresponding to our alignment scores, the pairwise alignment scores at the class
level are considered to be the population values. The mean and standard deviation of these values
are then calculated. These population parameters are then used in the computation of the z-score
corresponding to a given alignment score. The correlation coefficient of the z-scores at different levels
of the SCOP hierarchy is then computed. The results are tabulated in Table 8.3.

Table 8.3: Correlation of z-scores of alignments obtained using our method and DALI.
Family Superfamily Fold Class Decoy

0.82 0.75 0.79 0.18 0.05
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(a) Non-linear Bézier curve abstraction (b) DALI

(c) Matt (d) TM-align

Figure 8.9: Box-whisker plots of comparisons on a structural set derived from SCOP using the geo-
metric profiles of our non-linear abstraction and other popular alignment methods viz. DALI, Matt,
TM-align. (Note, the scale on the Y-axis differ between plots. A comparison of the widths of the
boxes across two boxplots has no meaning. Each boxplot is used to assess the discriminative power
across the SCOP hierarchy using an alignment method.)

From the correlation coefficients, it can be deduced that there is a significant linear dependence
between the alignment z-scores produced by the two methods. This confirms the effectiveness of the
alignments generated by our method at the family, superfamily, and fold level. However, at the class
and decoy level, the degree of correlation is not substantial. The alignments are also compared against
the ones generated using TM-align and Matt. TM-align also provides a better discrimination at the
Class and Decoy level. However, the variance of the alignment scores at each level of the SCOP
hierarchy is greater compared to all other alignment methods. The alignment results of Matt and ours
are also comparable as can be seen from the boxplots.

The results suggest that the proposed abstraction mechanism allows for accurate fold-level dis-
crimination using the simplest of the search strategies. The method of comparison is however used
here only as a proof of concept. The proposed non-linear abstraction can be used as the basis of more
rigorous methods for efficient large scale structure comparison. Towards this goal, the use of Knot
invariants from algebraic topology is explored.
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Knot Invariants based comparison

Røgen and Fain (2003) introduced an approach to compare protein structures by representing each
structure as a 30-dimensional vector of topological knot invariants. The similarity between any two
structures is then given by the Euclidean distance between the two vectors. This forms an alignment-
free methodology for structural comparison. The components of the vector correspond to the knot
invariants computed by approximating the protein backbone as a polygon. Knot invariants are generic
and provide a framework to compare non-linear curves. But because of the lack of closed form solutions
in computing the individual invariants, the non-linear curves are approximated as polygons. There
exists an analytical way to compute the invariants when the curve is comprised of line segments. The
details are outlined in Røgen and Fain (2003).

We adapt Røgen and Fain (2003)’s idea to our approach. Each Bézier abstraction is approximated
as a polygon by the method described in Section 8.4.2 (that constructs geometric profiles for compar-
ison). Knot invariants are then computed using this polygon. The discriminative ability of the knot
inavriants based methodology is tested on our data set selected from SCOP. The results are shown
in Figure 8.10. We notice that the discriminative ability using the knot invariant alignment-free ap-
proach is significantly poorer than the one achieved using simple geometric profiles (see Figure 8.9a).
This might be because in order to achieve a better discrimination using knot invariants, the Bézier

Figure 8.10: Box-whisker plots for the non-linear Bézier curve abstractions compared using knot
invariants (smaller value on the ordinate axis implies better structural relationships).

curves should be considered raw (without abstracting them as polygons). This involves solving the
Gaussian integrals which do not have closed form solutions (unlike the polygonal case considered in
this exercise).

8.5 Summary

This chapter describes the MML inference of a set of piecewise non-linear curves that optimally
model 3D data with inherent curvilinear nature. As a demonstration of the inference process, protein
coordinate data is discussed as a case in point. The data is modelled using segments of non-linear
Bézier curves. The ability of the MML criterion to objectively evaluate competing segmentations and
determine the optimal combination of curves is practically demonstrated through relevant case studies.

The proposed Bézier abstraction mechanism does not rely on secondary structure assignment of
proteins to generate concise representations. This preserves the underlying geometry which would
otherwise be partially lost due to secondary structure assignment. Only about half of the protein is
made of standard secondary structural elements. Hence, abstract representations requiring an initial
assignment do not span the entire protein region. This drawback has been highlighted when studying
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an example in Section 8.4.1. In contrast, the proposed mechanism represents the whole protein region
and is able to model both the regular (helices and strands) and irregular portions (coils) of proteins
using Bézier curves. This allows complete coverage without compromising the features essential in the
modelling of proteins.

Furthermore, in the context of protein modelling, the practical utility of the method is carefully
analyzed. The Bézier segmentation of proteins can be used as a starting point for investigations into
other challenging computational problems in structural biology. As an example application, compar-
isons of protein structures is described. The generated Bézier segmentations are used to construct
geometric profiles of the proteins. A methodology to compare any two protein structures by sequence
alignment of their geometric profiles is described. The designed methodology is employed in the im-
portant task of identifying proteins with similar folding patterns. While searching a huge database
of proteins, the comparison method can be employed to quickly filter out candidate proteins that are
similar to the protein under consideration. The filtered candidates can then be carefully scrutinized
to determine their similarity. This work has since been published in Kasarapu et al. (2014).



Chapter 9

Conclusion

9.1 Summary

This thesis addresses some of the inference problems that are typically encountered when modelling
data distributed in the Euclidean space and data that is directional in nature. In doing this, it
highlights the importance of correctly accounting for the model’s complexity when selecting an optimal
model. To achieve this, it uses an inference framework based on the MML principle which has been
shown to be able to appropriately resolve the complexity-fit trade-off of using a certain model. In
particular, it uses the Wallace and Freeman (1987) approximation of the strict MML principle to infer
the parameters of the probability distributions.

The core of this thesis focused on deriving the MML estimators of some commonly used probability
distributions whose parameters have not been previously characterized. These include the Laplace and
multivariate Gaussian, which allow for modelling of data in the Euclidean space, and also the MML
estimators of directional probability distributions such as the multivariate vMF to model data on the
unit hypersphere, the Kent distribution to model data on the surface of a 3D sphere, and the BVM
distribution to model data distributed on the surface of a 3D torus. We demonstrated that the derived
estimators fare better in comparison to the traditionally used ML and MAP estimators, in terms of
bias, MSE, and KL distance. The statistical consistency of the estimators has been established using
the likelihood ratio based hypothesis testing.

Furthermore, for modelling real-world empirical data with multiple modes, we described a mix-
ture modelling method that simultaneously infers an optimal number of mixture components along
with the mixture parameters. We developed the search and inference modelling apparatus for the
case of multivariate Gaussian mixtures and demonstrated that it is superior to the state-of-the-art.
The generalizability of our proposed search method was demonstrated by adapting it to mixtures of
directional probability distributions.

We then demonstrated the applicability of our mixture modelling method in describing real-world
directional data that is of practical significance. To achieve this, we employed high-dimensional vMF
mixtures in text clustering, where the normalized representations of the text documents correspond
to data on the unit hypersphere. We also employed 3D vMF and Kent distributions in modelling 3D
protein directional data generated from the spatial orientations of the central carbon atoms along the
protein main chain. We observed that the Kent mixtures have better explanatory power compared
to the vMF mixtures. These improved mixture models can be used as fundamental tools in protein
modelling tasks such as generating random protein conformations and 3D protein structure align-
ments. We also considered mixtures of BVM distributions to model the protein main chain dihedral
angle pairs. These BVM mixture models can facilitate the understanding of the important structural
properties of the proteins such as their folds. The resulting BVM mixtures are shown to supersede
the models that assume no correlation between the pairs of dihedral angles.

The inferred mixtures of the directional probability distributions considered in this thesis are shown
to closely emulate the empirical distribution of the data. Our search method which was used to infer
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these mixtures is able to identify regions of importance, namely the α-helices and β-strands, in the
protein conformational space. These regions are important because they correspond to the secondary
structure of proteins. Importantly, our MML-based mixture modelling method is carried out in a
completely unsupervised setting without requiring any knowledge about the underlying distribution
of the data.

This thesis also explored the problem of function approximation. Specifically, we showed the
applicability of the MML framework in approximating the infinite series expansion of a periodic
function using a finite number of orthogonal basis functions. Such an approach is useful in the context
of protein structure determination, where one is required to approximate the infinite Fourier expansion
correponding to the diffraction pattern of the 3D structures of crystallized protein molecules.

Finally, we also investigated the modelling of data that is not described using probability distri-
butions. The Wallace and Freeman (1987) method is computationally tractable only for models of
probability distributions. Hence, when there is no probabilistic interpretation of the models of the
data, one has to develop the schemes to explicitly encode the model parameters and the data using
those parameters in accordance with the general MML framework. We specifically explored the prob-
lem of representing a set of 3D points by using a piecewise combination of Bézier curves of varying
degrees, rather than by probability distributions. We have demonstrated that such representations of
protein structural data are useful in modelling their folding patterns, and serve as unique signatures
that facilitate rapid searches for similar structures in large protein databases.

9.2 Further work

A clear direction of further work is to develop alternative strategies of modelling Euclidean and
directional data. This may be facilitated by modifying the mixture modelling apparatus discussed in
Chapter 5, where we described a generalized framework of mixture modelling using split, delete, and
merge operations. It may be useful to define alternative versions of these operations. For example,
in the split operation, we initialized the means of the child components to be at a distance equal to
the maximum eigenvalue on either side of the parent mean along the direction of maximum variance.
Such an approach is deterministic in nature and it is easy to develop specific examples where such
an approach might not be useful. To make the split operation non-deterministic, a strategy, such as
using random initializations along the maximum variance direction within some reasonable distance
from the parent mean, may be used. Similarly, the deletion step can be modified by incorporating the
effective number of data points within each components and selectively eliminating those with fewer
data memberships in some reliable way. Further, while merging a pair of components, in addition to
using the KL distance, we could take into account the empirical distribution of the data within those
components. There are conceivably several variations of these operations that have to be carefully
studied.

In addition to updating the individual operations employed in the search process, the current
implementation of the search method can itself be modified. Our proposed search method perturbs
an intermediate mixture exhaustively. An interesting modification is to include only some of the
perturbations for selected components. This could be done by determining the propensity of the
mixture components to improve the total message length by considering their previous history (Wallace
and Dowe, 1994a). The different perturbations can also be carried out probabilistically, following a
similar approach to simulated annealing. However, such an approach should be robust in terms of
recovering components if they are deleted by chance.

Further interesting extensions of the mixture modelling method arise in the context of partitioning
the observed data into groups using the widely used K-means clustering algorithm. In the traditional
K-means method, the number of clusters, denoted by K, has to be specified. Alternatively, the best
K is determined by trying various values of K and selecting the one that minimizes a given objective
function. However, as pointed out in Section 5.3, such an approach only leads to a sub-optimal solution
and is not elegant. A search method similar to the one proposed for mixture modelling in Section 5.4
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can be designed in this regard. Also, the cluster memberships are computed using an Euclidean metric
as the distribution of data within the clusters is not modelled by probability distributions. This poses
another challenge in terms of using the MML framework to do mixture modelling when the component
models are not probability distributions.

The MML-based search and inference method can further be developed for hierarchical clustering
and subsequent selection of the optimal number of clusters. Hierarchical clustering methods do not
yield distinct partitions of data and so, the data may belong to several clusters. Hierarchical clustering
is of practical signifance as it has the potential to result in meaningful grouping of data that exhibit a
clear taxonomical structure. Boulton and Wallace (1973, 1975) have previously attempted hierarchical
clustering using the MML framework. Their MML-based hierarchical clustering was employed in the
context of identifying the various vegetation types by Wallace and Dale (2005). There is a scope for
generalizing the hierarchical clustering method to apply to wide variety of problems, an example of
which is the identification of the evolutionary tree of different plant and animal species. It also has an
important biological application in identifying various levels of supersecondary structures. The most
common secondary structural elements in protein structures are the α-helices and β-strands. However,
it is conceivable that these fundamental secondary structural elements can be grouped in a biologically
meaningful way leading to the discovery of frequently occuring patterns in protein structures.

Another interesting extension of this thesis is to investigate the utility of other MML approxima-
tions (Lam, 2000). Recall from Chapter 2 that the Wallace and Freeman (1987) approximation is one
practical way of inference using the MML framework. Parameter estimation based on this approach
involves a quadratic approximation of the Taylor series expansion of the negative log-likelihood func-
tion in the derivation of the minimum message length expression (see Section 2.4.2). The Wallace and
Freeman (1987) approximation relies on the explicit computation of the determinant of the expected
Fisher information matrix. As we have seen in the context of parameter estimation of the probability
distributions discussed in this thesis (Chapters 3, 4 and 5), the computation of the expected Fisher re-
quires the complete mathematical forms of the probability distributions including explicit expressions
of their normalization constants.

There are several probability distributions that do not have closed form expressions of their nor-
malization constants or for which the normalization constants are not computationally tractable.
Some examples include directional probability distributions from the Fisher-Bingham family (Mar-
dia, 1975b). The MMLD approximation (Dowe et al., 1998; Wallace, 2005) is useful in such cases.
Compared to the Wallace and Freeman (1987) approximation, the MMLD variant is computationally
intensive. However, this approximation has been previously employed in univariate polynomial infer-
ence (Fitzgibbon et al., 2002), mixture modelling of multivariate Gaussian distributions (Agusta and
Dowe, 2002), and inference of multilayer perceptrons (Makalic and Allison, 2013).

There can be a strong case made for using the MMLD approximation in modelling directional
data. Recall that in Chapter 6, we used the vMF and the FB5 probability distributions to model
directional data on the unit sphere. The parameters of the vMF and FB5 distributions have natu-
ral interpretations and are specific cases of the general Fisher-Bingham (FB8) distribution (Mardia,
1975b; Bingham and Mardia, 1978). Further, these distributions are particularly useful for modelling
data that are symmetrically distributed. In order to model data that has no obvious symmetry, the
FB8 distributions offer a better alternative (Wood, 1988). However, inference using the FB8 distri-
bution poses difficulties because of its complex mathematical form. As a result, the Wallace and
Freeman (1987) approximation cannot be readily used. As an alternative, the MMLD approximation
can be useful. Once the MML parameter estimators are derived for the FB8 distribution, it can be
used in conjunction with our mixture modelling apparatus. As an example application, mixtures of
FB8 distributions can be used to model protein directional data (as in Section 6.3.3). The models
resulting from the use of FB8 mixtures are expected to be superior null model descriptors of protein
directional data. Recall that the FB5 distribution is a generalization of the vMF distribution and we
demonstrated that FB5 mixtures better describe the protein directional data as compared to the vMF
mixtures. In the same vein, because the FB8 distribution is the most general one, the mixture models
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with FB8 component distributions would lead to additional compression of the protein directional
data and, consequently, serve as efficient descriptors.

Finally, another interesting extension of this thesis is in the domain of modelling the dihedral angles
along the entire protein backbone, rather than focusing only on the protein main chain. Recall from
Section 6.4 that the bivariate von Mises (BVM) mixtures were used in the modelling of protein main
chain dihedral angles. The main chain dihedrals form a collection of angular pairs that are represented
as points on the surface of a 3D torus. The protein backbone is made up of side chain atoms in addition
to the main chain atoms. In Figure 9.1, the main chain dihedral (φ, ψ) pairs are shown in blue and
the side chain dihedrals (χ1, χ2, χ3) are shown in green. The modelling of protein side chains is
particularly important in applications that involve the sampling of protein conformational space to
construct reliable models of protein structures (Bower et al., 1997). Finding an initial reliable sample
set of conformations is the starting point for ab initio structure prediction tasks such as homology
modelling, protein design and engineering (Dunbrack and Cohen, 1997).

Figure 9.1: Protein side chain dihedral angles denoted by (χ1, χ2, χ3).

The number of dihedral angles that are part of the side chain are variable (can be upto four) and
depends on the amino acid type. The side chain dihedrals are represented as points on the surface of
a multidimensional torus. A directional probability distribution that models the joint distribution of
such data is the multivariate von Mises distribution. The explicit form of the normalization constant in
the general multivariate case is not known for this distribution (Mardia et al., 2008). Hence, inference
using this probability distribution is a difficult problem and requires the challenging task of estimating
its parameters and employing it in the context of mixture modelling. Mardia et al. (2008) derived
the parameter estimators using the methods of moments and pseudo-likelihood. The traditional
estimation methods can be improved by employing MML-based estimation. The multivariate von
Mises is a classic example where the MMLD approximation can be used to estimate the parameters of
the distribution. The MML framework can, therefore, be extended to the modelling of the protein side
chain and generating models that closely emulate the empirical distribution of the dihedral angles.
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Appendix A

A.1 Supporting derivations required for evaluating the MML esti-
mates, κMN and κMH

For brevity, let Ad(κ), A′d(κ), A′′d(κ), and A′′′d (κ) be represented as A,A′, A′′, and A′′′ respectively. The
expressions to evaluate A,A′, and A′′ are given by Equations 4.4), 4.8, and 4.10) respectively. We
require A′′′ for its use in the remainder of the derivation. Its expression is provided below

A′′′

A′
= −2AA′′

A′
− 2A′ − (d− 1)

κ

A′′

A′
− 2(d− 1)

κ3

A

A′
+

2(d− 1)

κ2

In the following discussion, the derivations of G′(κ) and G′′(κ) that are required for computing the
two versions of the MML estimate of the vMF concentration parameter, κMN (Equation 4.14) and
κMH (Equation 4.15) are given. On differentiating Equation 4.13, we get

G′(κ) =
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Using Equations 4.4 and 4.8, we have
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Using Equations 4.4, 4.8, 4.10, and the above given expression for A′′′, we have
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where
∂

∂κ

(
AA′′

κ2A′2

)
=
κAA′A′′′ + κA′2A′′ − 2κAA′′2 − 2AA′A′′
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Equations A.1 and A.2 can be used to evaluate G′(κ) and G′′(κ) which can then be used to approximate
the MML estimates κMN and κMH respectively.

A.2 Derivation of the Kullback-Leibler (KL) distance between two
vMF distributions

The closed form expression to calculate the KL distance between two vMF distributions is derived
below. Let f(x) = Cd(κ1) exp{κ1µ

T
1x} and g(x) = Cd(κ2) exp{κ2µ

T
2x} be two vMF distributions with

mean directions µ1,µ2 and concentration parameters κ1, κ2 respectively. Recall from Section 2.5.2,
the KL distance between any two distributions is given by

DKL(f ||g) =

∫
x
f(x) log

f(x)

g(x)
dx

where Ef [·] is the expectation of the quantity [·] using the probability density function f . For a vMF
distribution,

log
f(x)

g(x)
= log

Cd(κ1)

Cd(κ2)
+ (κ1µ1 − κ2µ2)Tx

Using the fact that Ef [x] = Ad(κ1)µ1 (Mardia et al., 1984; Fisher, 1993), we obtain the following
expression for the KL distance for vMF distributions as

Ef

[
log

f(x)

g(x)

]
= log

Cd(κ1)

Cd(κ2)
+ (κ1µ1 − κ2µ2)TAd(κ1)µ1

DKL(f ||g) = log
Cd(κ1)

Cd(κ2)
+Ad(κ1)(κ1 − κ2µ

T
1µ2) (A.3)



Appendix B

B.1 Prior density governed by the κ prior for the 2D vMF

In the MML estimation of parameters of a vMF distribution on a circle, Wallace and Dowe (1994b) use

Pr(κ) =
κ

(1 + κ2)3/2
. In the following discussion, this prior is considered as this leads to an invertible

transformation of all five parameters, as described below, in the context of a FB5 distribution. As

in Section 4.3.3, Pr(ψ, α, η) =
sinα

4π2
and Pr(β|κ) = 2/κ. Hence, the joint prior density Pr(Θ) is

formulated as shown below. Further, using the eccentricity transform described previously, the joint
prior density Pr(Θ′) in Θ′ parameterization is given below.

Pr(Θ) = Pr(ψ, α, η, κ, β) =
sinα

2π2(1 + κ2)3/2
and Pr(Θ′) = Pr(ψ, α, η, κ, e) =

κ sinα

4π2(1 + κ2)3/2

An alternative parameterization of the parameter vector Θ

In addition to the eccentricity transform, we study another transformation that was proposed by
Rosenblatt (1952). We used this transformation in the context of alternative parameterizations of
the prior density for BVM Sine distributions (Section 4.4.2). The Rosenblatt (1952) transformation
applied on the prior density of the FB5 parameter vector Θ results in the prior transforming to a
uniform distribution. Hence, estimation in this transformed parameter space is equivalent to the
corresponding maximum likelihood estimation.

For the 5-parameter vector Θ = (ψ, α, η, κ, β), the Rosenblatt (1952) transformation to Θ′′ =
(z1, z2, z3, z4, z5) is given by

z1 = Pr(X1 ≤ ψ) = F1(ψ)

z2 = Pr(X2 ≤ α|X1 = ψ) = F2(α|ψ)

z3 = Pr(X3 ≤ η|X2 = α,X1 = ψ) = F3(η|α,ψ)

z4 = Pr(X4 ≤ κ|X3 = η,X2 = α,X1 = ψ) = F4(κ|η, α, ψ)

z5 = Pr(X5 ≤ β|X4 = κ,X3 = η,X2 = α,X1 = ψ) = F5(β|κ, η, α, ψ)

This transformation results in 0 ≤ zi ≤ 1, i = 1, . . . , 5. As each zi is uniformly and independently
distributed on [0, 1] (Rosenblatt, 1952), the prior density in this transformed parameter space is
Pr(Θ′′) = Pr(z1, z2, z3, z4, z5) = 1.

In order to achieve such a transformation, we need to express zi in terms of the original parameters.
As per the definitions of the prior on Θ (Section 4.3.3), the following relationships are derived.

z1 = ψ/π =⇒ ψ = πz1

z2 = (1− cosα)/2 =⇒ α = arccos(1− 2z2)

z3 = η/(2π) =⇒ η = 2πz3 (B.1)
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Based on the independence assumption in the formulation of priors of angular and scale parameters,
z4 = F4(κ|η, α, ψ) = F4(κ). Similarly, F5(β|κ, η, α, ψ) = F5(β|κ). Hence, the invertible transforma-
tions corresponding to κ and β are

z4 =

∫ κ

0
h(κ)dκ =

∫ κ

0

κ

(1 + κ2)3/2
dκ = 1− cos(arctanκ) =⇒ κ = tan(arccos(1− z4))

z5 = F5(β|κ) = 2β/κ =⇒ β = κ z5/2 (B.2)

With the 3D version of vMF κ prior (Section 4.3.3), z4 evaluates to
2

π

(
arctanκ− κ

1 + κ2

)
. This

version of z4 is not invertible as it does not allow us to express κ as a closed form expression in z4.
Hence, the Rosenblatt (1952) transformation is discussed only in the context when 2D vMF κ prior
is considered, as it is possible to find an inverse transformation.

The example demonstrating the effects of alternative parameterizations

The above discussed prior and its variants are used in the MAP-based parameter estimation of the
data from the example discussed in Section 4.3.3. The resulting estimates of ψ, α, and η are

Pr(Θ) : ψ̂ = 2.070, α̂ = 1.493, η̂ = 1.522

Pr(Θ′) : ψ̂ = 2.070, α̂ = 1.493, η̂ = 1.522

Pr(Θ′′) : ẑ1 = 0.659, ẑ2 = 0.461, ẑ3 = 0.242

As observed, ψ̂, α̂, and η̂ are the same when posteriors corresponding to Pr(Θ) and Pr(Θ′) are used.
In the case of Pr(Θ′′), the mapping of ẑ1, ẑ2, ẑ3 back to ψ̂, α̂, η̂ (Equation B.1), results in the same esti-
mates as that of Pr(Θ) and Pr(Θ′). Hence, the MAP estimates of ψ, α, η are same across the different
versions. The estimates of κ and β are, however, not the same under the various transformations.
Their values vary depending on the parameterization and are

Pr(Θ) : κ̂ = 16.975, β̂ = 5.467

Pr(Θ′) : κ̂ = 20.547, ê = 0.701 =⇒ β̂ = κ̂ ê/2 = 7.205

Pr(Θ′′) : ẑ4 = 0.964, ẑ5 = 0.779 =⇒ κ̂ = 28.065, β̂ = 10.925 (as per Equation B.2)

The estimated value of κ using Pr(Θ) is 16.975 whereas it is 20.547 using Pr(Θ′). The value of ê
corresponds to a β̂ = 7.205. Similarly, the value of κ̂ and β̂ corresponding to ẑ4 = 0.964 and ẑ5 =
0.0.779 are 28.065 and 10.925 respectively. Clearly, the value of the parameter estimates depend on the
parameterization. However, it is required that the estimates obtained in different parameterizations
should be the same irrespective of the space in which the parameters are defined. However, through
this example, it is observed that for the various parameterizations, the value of MAP estimates differ.

The variation of the posterior density under various transformations of the parameter space are
shown in Figure B.1. These are plotted as a function of κ, β (in case of Pr(Θ)), κ, e (in case of Pr(Θ′)),
and z4, z5 (in case of Pr(Θ′′)), each reflecting the space in which the posterior is defined. It is observed
that the modes of the respective posterior distributions occur at different positions and they are not
equivalent to each other. The posterior density plots in Figure B.1(b) and (c) correspond to those
in Figure B.1(d) and (e) respectively. Ideally, (the modes in) Figure B.1(a)-(c) should be the same.
However, as demonstrated, that is not the case. Thus, maximizing the posterior density does not yield
consistent estimates as observed through this example.
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(a) Pr(Θ) (b) Pr(Θ′) (c) Pr(Θ′′)

(d) Pr(Θ′) (e) Pr(Θ′′)

Figure B.1: Heat maps depicting the modes (MAP estimates) of the posterior density resulting from
different parameterizations.

B.2 The partial derivatives of γγγ1, γγγ2, γγγ3 with respect to ψ, α, η

The first and second order partial derivatives of the axes are required for the evaluation of the elements
of the Fisher information matrix (see Section 4.3.4). The expressions for γγγ1, γγγ2, and γγγ3 as a function
of ψ, α, and η are given by Equation 4.19.

Derivatives of γγγ1

∂γγγ1

∂α
=

 cosα

sinα cos η

sinα sin η

 ,
∂γγγ1

∂η
=

 0

− sinα sin η

sinα cos η


∂2γγγ1

∂α2
= −γγγ1 ,

∂2γγγ1

∂η2
=

 0

− sinα cos η

− sinα sin η

 ,
∂2γγγ1

∂η∂α
=

 0

− cosα sin η

cosα cos η


The partial derivatives of γγγ1 involving the parameter ψ are zero vectors.
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Derivatives of γγγ2

∂γγγ2

∂α
= − cosψγγγ1 ,

∂γγγ2

∂η
=

 0

− cosψ cosα sin η − sinψ cos η

cosψ cosα cos η − sinψ sin η

 ,
∂γγγ2

∂ψ
= γγγ3

∂2γγγ2

∂α2
= − cosψ

∂γγγ1

∂α
,

∂2γγγ2

∂η2
=

 0

− cosψ cosα cos η + sinψ sin η

− cosψ cosα sin η − sinψ cos η

 ,
∂2γγγ2

∂ψ2
= −γγγ2

∂2γγγ2

∂η∂α
= − cosψ

∂γγγ1

∂η
,

∂2γγγ2

∂ψ∂α
= sinψγγγ1 ,

∂2γγγ2

∂ψ∂η
=
∂γγγ3

∂η

Derivatives of γγγ3

∂γγγ3

∂α
= sinψγγγ1 ,

∂γγγ3

∂η
=

 0

sinψ cosα sin η − cosψ cos η

− sinψ cosα cos η − cosψ sin η

 ,
∂γγγ3

∂ψ
= −γγγ2

∂2γγγ3

∂α2
= − sinψ

∂γγγ1

∂α
,

∂2γγγ3

∂η2
=

 0

sinψ cosα cos η + cosψ sin η

sinψ cosα sin η − cosψ cos η

 ,
∂2γγγ3

∂ψ2
= −γγγ3

∂2γγγ3

∂η∂α
= sinψ

∂γγγ1

∂η
,

∂2γγγ3

∂ψ∂α
= cosψγγγ1 ,

∂2γγγ3

∂ψ∂η
= − ∂γγγ2

∂η

B.3 Derivation of the KL distance between two FB5 distributions

The analytical form of the KL distance between two FB5 distributions is derived below. The KL
distance between two probability distributions fa and fb is defined by Equation 2.15. Let fa(x) =
FB5(κa, βa,Qa) and fb(x) = FB5(κb, βb,Qb) be two distributions such that Qa = (γγγa1, γγγa2, γγγa3) and
Qb = (γγγb1, γγγb2, γγγb3). Let ca and cb be their respective normalization constants. Then,

Ea
[
log

fa(x)

fb(x)

]
= log

cb
ca

+ (κaγγγ
T
a1 − κbγγγTb1)Ea[x]

+ βa γγγ
T
a2 Ea[xxT]γγγa2 − βb γγγTb2 Ea[xxT]γγγb2

− βa γγγTa3 Ea[xxT]γγγa3 + βb γγγ
T
b3 Ea[xxT]γγγb3 (B.3)

gives the analytical form of the KL distance of two FB5 distributions. The expressions for Ea[x] and
Ea[xxT] are derived in Equation 4.28.



Appendix C

C.1 Derivation of the KL distance between two BVM Sine distri-
butions

The analytical form of the KL distance between two BVM Sine distributions is derived below. For
a datum x = (θ1, θ2), where θ1, θ2 ∈ [0, 2π), let fa(x) = BVM(µa1, µa2, κa1, κa2, λa) and fb(x) =
BVM(µb1, µb2, κb1, κb2, λb)) be two BVM Sine distributions whose probability density functions are
given by Equation 4.43. Let ca and cb be their respective normalization constants, whose expressions
are given by Equation 4.44. The computation of the BVM Sine normalization constant is presented
in Section 4.4.4.

The KL distance between two probability distributions fa and fb is defined by Ea
[
log

fa(x)

fb(x)

]
(Equation 2.15). Using the density function in Equation 4.43, we have

Ea[log fa(x)] = − log ca+κa1Ea[cos(θ1−µa1)]+κa2Ea[cos(θ2−µa2)]+λaEa[sin(θ1−µa1) sin(θ2−µa2)]

The expressions for the above expectation terms Ea[cos(θ1 − µa1)], Ea[cos(θ2 − µa2)] and Ea[sin(θ1 −
µa1) sin(θ2 − µa2)] can be computed and are given by Equation 4.51. Similarly, the expectation of
log fb(x) is

Ea[log fb(x)] = − log cb + κb1Ea[cos(θ1− µb1)] + κb2Ea[cos(θ2− µb2)] + λbEa[sin(θ1− µb1) sin(θ2− µb2)]

In order to compute Ea[cos(θ1 − µb1)], we express cos(θ1 − µb1) as

cos(θ1 − µb1) = cos(θ1 − µa1 + µa1 − µb1)

= cos(θ1 − µa1) cos(µa1 − µb1)− sin(θ1 − µa1) sin(µa1 − µb1)

Given that Ea[sin(θ1 − µa1)] = 0 (Equation 4.51), we have

Ea[cos(θ1 − µb1)] = cos(µa1 − µb1)Ea[cos(θ1 − µa1)]

Similarly, Ea[cos(θ2 − µb2)] = cos(µa2 − µb2)Ea[cos(θ2 − µa2)]

In order to compute Ea[sin(θ1 − µb1) sin(θ2 − µb2)], we express the product of the sine terms as

sin(θ1 − µb1) sin(θ2 − µb2) = sin(θ1 − µa1 + µa1 − µb1) sin(θ2 − µa2 + µa2 − µb2)

Further, using the property that Ea[cos(θ1 − µa1) sin(θ2 − µa2)] = E[sin(θ1 − µa1) cos(θ2 − µa2)] = 0
(Equation 4.52), we have

Ea[sin(θ1 − µb1) sin(θ2 − µb2)] = cos(µa1 − µb1) cos(µa2 − µb2)Ea[sin(θ1 − µa1) sin(θ2 − µa2)]

+ sin(µa1 − µb1) sin(µa2 − µb2)Ea[cos(θ1 − µa1) cos(θ2 − µa2)]

192



C.1. DERIVATION OF THE KL DISTANCE BETWEEN TWO BVM SINE DISTRIBUTIONS193

Then, the KL distance between the two distributions fa and fb is derived as

Ea
[
log

fa(x)

fb(x)

]
= log

cb
ca

+ {κa1 − κb1 cos(µa1 − µb1)}Ea[cos(θ1 − µa1)]

+ {κa2 − κb2 cos(µa2 − µb2)}Ea[cos(θ2 − µa2)]

+ {λa − λb cos(µa1 − µb1) cos(µa2 − µb2)}Ea[sin(θ1 − µa1) sin(θ2 − µa2)]

− λb sin(µa1 − µb1) sin(µa2 − µb2) (C.1)

gives the analytical form of the KL distance of two BVM Sine distributions.

Special case (λ = 0): The BVM Sine distribution reduces to the product of two individual von
Mises circular distributions given by Equation 4.45. To compute the KL distance between two BVM
Independent distributions, we can use Equation C.1, with λ = 0. Alternatively, we may use the KL
distance derived in the case of vMF distributions (Equation A.3) and substitute d = 2 in that equation
to derive a simpler form.

As per Equations 4.1 and 4.4, note that when d = 2, Cd(κ) =
1

2πI0(κ)
, and Ad(κ) =

I1(κ)

I0(κ)
, where

I0(κ) and I1(κ) are the modified Bessel functions. The KL distance between the BVM Independent
distributions fa and fb is

Ea
[
log

fa(x)

fb(x)

]
= log

I0(κb1)

I0(κa1)
+
I1(κa1)

I0(κa1)
{κa1 − κb1 cos(µa1 − µb1)}

+ log
I0(κb2)

I0(κa2)
+
I1(κa2)

I0(κa2)
{κa2 − κb2 cos(µa2 − µb2)} (C.2)



Appendix D

D.1 Derivation of the weight estimates in MML mixture modelling

As per Equation 5.5, the total message length expression can be expressed as

I(Φ,D) = −1

2

K∑
j=1

wj −
N∑
i=1

log
K∑
j=1

wjfj(xi; Θj) + terms independent of wj

To obtain the optimal weights under the constraint
K∑
j=1

wj = 1, the above equation is optimized using

the Lagrangian objective function L(Φ,D, λ) defined below using the Lagrangian multiplier λ.

L(Φ,D, λ) = I(Φ,D) + λ

 K∑
j=1

wj − 1


For k ∈ {1,K}, the equation resulting from computing the partial derivative of L with respect to wk
and equating it to zero gives the optimal weight wk.

∂L

∂wk
= 0 =⇒ λ =

1

2wk
+

N∑
i=1

fk(xi; Θk)∑K
j=1wjfj(xi; Θj)

(D.1)

We have

N∑
i=1

fk(xi; Θk)∑K
j=1wjfj(xi; Θj)

=
1

wk

N∑
i=1

wkfk(xi; Θk)∑K
j=1wjfj(xi; Θj)

=
1

wk

N∑
i=1

rik =
nk
wk

where rik and nk are the responsibility and effective membership terms given as per Equations 5.3
and 5.4 respectively. Substituting the above value in Equation D.1, we have

λ =
1

2wk
+
nk
wk

=⇒ λwk = nk +
1

2
(D.2)

There are K equations similar to Equation D.2 for values of k ∈ {1,K}. Adding all these equations
together, we get

λ
K∑
j=1

wj =
K∑
j=1

nj +
K

2
=⇒ λ = N +

K

2

Substituting the above value of λ in Equation(D.2), we get wk =
nk + 1

2

N + K
2

.
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D.2 The perturbations of the FB5 component: example from Sec-
tion 6.3.2

φ

0 30 60 90

θ

0

30

60

90

(a) Initialize means of children

φ

0 30 60 90

θ

0

30

60

90

(b) Children (I = 19186)

φ

0 30 60 90

θ

0

30

60

90

(c) M4 : post-EM (I = 19174)

φ

0 30 60 90

θ

0

30

60

90

(d)

φ

0 30 60 90

θ

0

30

60

90

(e) Before optimizing (I = 20741)

φ

0 30 60 90

θ

0

30

60

90

(f) post-EM (I = 19320)

φ

0 30 60 90

θ

0

30

60

90

(g)

φ

0 30 60 90

θ

0

30

60

90

(h) Before optimizing (I = 19371)

φ

0 30 60 90

θ

0

30

60

90
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Figure D.1: Iteration 3 - operations on P1 (a)-(c) splitting, (d)-(f) deletion, (g)-(i) merging



Appendix E

E.1 MML estimates of the parameters of the regression problem

The following derivations are based on the setup described in Section 7.2 and are reproduced from
Wallace (2005). The parameters describing the complete regression model (Equation 7.3) are Θ =
{σ,w1, . . . , wK}. As per the Wallace and Freeman (1987) approximation described in Section 2.4.2,
a prior needs to be defined on the parameters, and the expected Fisher information needs to be
computed to encode the parameters.

First part message length: encoding the parameters

A locally uninformative prior is assumed for the standard deviation σ of the distribution from which the

random values of noise are sampled. If the range of log σ isR, then the prior on σ is given as h(σ) =
1

Rσ
.

It is further assumed that the weights wj , 1 ≤ j ≤ K are independently distributed and have a

Gaussian prior with zero mean and variance
σ2

m
, where m is a constant, that is, h(wj) ∼ N

(
0,
σ2

m

)
.

Hence, the joint prior on Θ = (σ,w) will be

h(Θ) = h(σ,w) =
1

Rσ

M∏
j=1

h(wj) (E.1)

Computation of the Fisher information F(Θ): The computation of the expected Fisher requires the
evaluation of the expectation of the second order partial derivatives of the negative log-likelihood
expression with respect to the parameters Θ. Based on Equation 7.3, the likelihood of data D =
{(xi, yi)}, 1 ≤ i ≤ N , is expressed as

f(D|Θ) = f(D|σ,w) = f(D|σ)h(w|σ)

=

N∏
i=1

ε√
2πσ

exp

−
(
yi −

K∑
j=1

wjφj(xi)

)2

2σ2


K∏
j=1

√
m√

2πσ
exp

(
−
mw2

j

2σ2

)
(E.2)

where ε is a constant accuracy of measurement used in MML inference (Section 2.4.1). The negative
log-likelihood of the data will then be L(D|Θ) = − log f(D|Θ) given below

L(D|Θ) =
(N +K)

2
log 2π −N log ε− K

2
logm+ (N +K) log σ

+
1

2σ2

 N∑
i=1

yi − K∑
j=1

wjφj(xi)

2

+m
K∑
j=1

w2
j


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For convenience, the above expression for L(D|Θ) can be concisely expressed as

L(D|Θ) =
(N +K)

2
log 2π −N log ε− K

2
logm+ (N +K) log σ +

1

2σ2

(
||y − Φw||2+m||w||2

)
(E.3)

where, ||y − Φw||2= (y − Φw)T (y − Φw), ||w||2= wTw

Φ =



φ1(x1) φ1(x1) φ2(x1) . . . φK(x1)

φ1(x2) φ1(x2) φ2(x2) . . . φK(x2)

. . . . .

. . . . .

. . . . .

φ1(xN ) φ1(xN ) φ2(xN ) . . . φK(xN )


, w =


w1

w2

.

.

wK

 , and y =


y1

y2

.

.

yN


The expectation of the second order partial derivatives of L(D|Θ) are computed as

∂L
∂σ

=
(N +K)

σ
− 1

σ3

[
(y − Φw)2 +mw2

]
∂2L
∂σ2

= −(N +K)

σ2
+

3

σ4

[
(y − Φw)2 +mw2

]
Hence, E

[
∂2L
∂σ2

]
= −(N +K)

σ2
+

3

σ4

[
Nσ2 +Kσ2

]
=

2(N +K)

σ2

∂L
∂wj

=
1

σ2

N∑
i=1

yi − M∑
j=1

wjφj(xi)

 (−φj(xi)) +
m

σ2
wj

∂2L
∂w2

j

=
1

σ2

N∑
i=1

φ2
j (xi) +

m

σ2
=

m+
N∑
i=1

φ2
j (xi)

σ2

Hence, E

[
∂2L
∂w2

j

]
=

m+
N∑
i=1

E
[
φ2
j (xi)

]
σ2

∂2L
∂wk∂wj

=
1

σ2

N∑
i=1

φk(xi)φj(xi)

Hence, E

[
∂2L

∂wk∂wj

]
=

1

σ2

N∑
i=1

E [φk(xi)φj(xi)]

Further,
∂2L
∂σ∂wj

=
2

σ3

N∑
i=1

yi − K∑
j=1

wjφj(xi)

φj(xi)−
2mwj
σ3

=⇒ E

[
∂2L
∂σ∂wj

]
= 0



198 APPENDIX E.

Using the above results, the expected Fisher information would be

F(σ,w) =



E
[
∂2L
∂σ2

]
E
[

∂2L
∂σ∂w1

]
E
[

∂2L
∂σ∂w2

]
. . . E

[
∂2L

∂σ∂wK

]
E
[

∂2L
∂w1∂σ

]
E
[
∂2L
∂w2

1

]
E
[

∂2L
∂w1∂w2

]
. . . E

[
∂2L

∂w1∂wK

]
E
[

∂2L
∂w2∂σ

]
E
[

∂2L
∂w2∂w1

]
E
[
∂2L
∂w2

2

]
. . . E

[
∂2L

∂w2∂wK

]
. . . . .

. . . . .

E
[

∂2L
∂wK∂σ

]
E
[

∂2L
∂wK∂w1

]
E
[

∂2L
∂wK∂w2

]
. . . E

[
∂2L
∂w2

K

]


=

2(N +K)

σ2

(
E

[
ΦTΦ

σ2
+
m

σ2
IK

])
where IK is the K ×K identity matrix. The determinant of the expected Fisher matrix is

|F(σ,w)|= 2(N +K)

σ2

|E
[
ΦTΦ +mI

]
|

σ2K
=

2(N +K)

σ2(K+1)
|Z|

where |Z|= determinant(E
[
ΦTΦ +mI

]
) (E.4)

Using the expressions for the prior density on the parameters (Equation E.1) and the Fisher infor-
mation as above, the message length corresponding to encoding the parameters (the first part) is
formulated using Equation 2.8 and is

I(Θ) =
p

2
log qp − log h(Θ) +

1

2
log|F(Θ)|

=
(K + 1)

2
log qp + logR+

1

2
log (2(N +K)|Z|)−K log σ (E.5)

where qp is the p-dimensional lattice quantization constant with p = K+1 (number of free parameters).

Second part message length: encoding the data given the parameters

Using the negative log-likelihood expression (Equation E.3), and the message length expression (Equa-
tion 2.8), the second part is formulated as

I(D|Θ) = L(D|Θ) +
p

2

=
(N +K)

2
log 2π −N log ε− K

2
logm+ (N +K) log σ +

1

2σ2

(
||y − Φw||2+m||w||2

)
+

(K + 1)

2
(E.6)

MML parameter estimates

To determine the MML estimates of the parameters of the regression model, the total message length
expression, given by I(Θ,D), needs to be minimized.

I(Θ,D) = I(σ,w,D) = N log σ +
1

2σ2

(
||y − Φw||2+m||w||2

)
+ constant

where the constant factor comprises of terms independent of the parameters σ and w. Let the MML

estimates of w and σ be ŵ and σ̂ respectively. They correspond to the solutions of
∂I

∂w
= 0 and
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∂I

∂σ
= 0 and are given by

∂I

∂w
= 0⇒ ∂

∂w

(
||y − Φw||2+m||w||2

]
= 0

⇒ ŵ =
(
ΦTΦ +mI

)−1
ΦTy

∂I

∂σ
= 0⇒ N

σ̂
− 1

σ̂3

[
(y − Φŵ)2 +mŵ2

]
= 0

Hence, σ̂ =

√
1

N
(||y − Φŵ||2+m||ŵ||2] (E.7)

The MML estimates can be now substituted in the total message length expression I(Θ,D) to
obtain the minimized message length. Note that it is required to evaluate |Z|, while computing the
Fisher information (Equation E.4). This is required for computing the first part of the message I(Θ).

For orthogonal basis functions, |Z| can be calculated in an explicit form as shown below. If
φj(x), 1 ≤ j ≤ K form an orthonormal basis set, then by definition (Section 7.3),

E [φj(x)φk(x)] =

{
N if j = k,

0 if j 6= k.

in which case
|Z|= determinant

(
E
[
ΦTΦ +mI

])
= (N +m)K (E.8)



Appendix F

F.1 Computation of the second spatial deviation

The point Gm on the Bézier curve (see Figure 8.2) corresponds to the point at which the tangent to
the curve is perpendicular to the line joining it and the point Fm. The parametric equation of the
Bézier curve is given by

p(t) =

n∑
k=0

(
n

k

)
tk(1− t)n−kpk (F.1)

Let Gm ≡ p(t) be a point on the curve and p′(t) be the tangent to the curve at point described
by the parameter t. Let Fm ≡ p be the point from which the shortest distance is to be measured.
The boldface representation (p) indicates that it is a vector comprised of (x, y, z) components. For
minimum distance, the dot product of the vector connecting p,p(t) and the tangent vector p′(t) is
zero.

[p− p(t)] .p′(t) = 0 (F.2)

In the current work, Bézier curves upto degree 3 are considered, so there are three cases.

1. Degree 1 corresponds to a straight line between Pi ≡ p0 and Pj ≡ p1. The curve is described
using two control points p0 and p1. Expanding (F.1),

p(t) = (1− t)p0 + tp1

p′(t) = −p0 + p1 (F.3)

In this case, the tangent at any point t is a constant for the curve is a straight line. Solving
Equations (F.2) and (F.3) gives

t =
(p− p0).(p1 − p0)

(p1 − p0).(p1 − p0)
(F.4)

2. Degree 2 corresponds to a quadratic curve between Pi ≡ p0 and Pj ≡ p2. The curve is de-
scribed using three control points – the end points p0, p2, and an intermediate control point p1.
Expanding (F.1),

p(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2

p′(t) = 2(p0 − 2p1 + p2)t+ 2(p1 − p0) (F.5)
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Solving Equations (F.2) and (F.5) results in a cubic polynomial in t

At3 +Bt2 + Ct+D = 0 such that

A = (p0 − 2p1 + p2).(p0 − 2p1 + p2)

B = (p0 − 2p1 + p2).(p1 − p0)

C = (p0 − 2p1 + p2).(p0 − p) + 2(p1 − p0).(p1 − p0)

D = (p1 − p0).(p0 − p)

3. Degree 3 corresponds to a cubic curve between Pi ≡ p0 and Pj ≡ p3. The curve is described
using four control points – the end points p0, p3, and two intermediate control points p1 and p2.
Expanding (F.1),

p(t) = (1− t)3p0 + 3t(1− t2)p1 + 3t2(1− t)p2 + t3p3

p′(t) = 3(−p0 + 3p1 − 3p2 + p3)t2 + 6(p0 − 2p1 + p2)t

+ 3(p1 − p0) (F.6)

Solving Equations (F.2) and (F.6) results in a quartic in t

At5 +Bt4 + Ct3 +Dt2 + Et+ F = 0 such that

A = (−p0 + 3p1 − 3p2 + p3).(−p0 + 3p1 − 3p2 + p3)

B = 5(−p0 + 3p1 − 3p2 + p3).(p0 − 2p1 + p2)

C = 6(p0 − 2p1 + p2).(p0 − 2p1 + p2) + 4(p1 − p0).(−p0 + 3p1 − 3p2 + p3)

D = 9(p1 − p0).(p0 − 2p1 + p2) + (p0 − p).(−p0 + 3p1 − 3p2 + p3)

E = 3(p1 − p0).(p1 − p0) + 2(p0 − p).(p0 − 2p1 + p2)

F = (p1 − p0).(p0 − p)

The quintic is guaranteed to have one real root. This root is solved for using the Interval Bisection
method. A few numerical solvers, namely methods such as Newton-Raphson & Bairstow discussed
in Press et al. (2002) have been attempted but none were consistent. The bound on the roots of
the polynomial is computed initially, and this interval is used as the starting range for the Bisection
method. After the first root is found, the other real roots are computed using numerically stable
quartic and cubic solvers. If either the cubic or the quintic had multiple real roots, then the current
t∗ is chosen to be the one which results in the least δm,3 value with respect to previous t∗. Once t∗ is
found, the second deviation would correspond to the distance between Gm ≡ P (t∗) and Fm.

F.2 Case studies of non-linear dissections

F.2.1 Dissection of regions of Clostridium Beijerinckii Flavodoxin: Oxidized

The nature of the dissections generated using the proposed approach is examined using Clostridium
Beijerinckii Flavodoxin molecule (Ludwig et al., 1997) with wwPDB code 5NLL. The linear and non-
linear representations generated using the approach are further contrasted with each other.

Figure F.1(a) shows the secondary structure assignment of 5NLL. The protein chain is composed
of 138 residues. When the standard helices and strands of sheet are replaced by straight lines, we get a
representation as depicted in Figure F.1(b). This representation summarized in Table F.1 shows that
only 86 (∼ 62%) of the 138 residues are captured using this representation. On the other hand, the
representations that result from the proposed approach are able to capture all the protein residues (see
Figure F.1c). Here, the resultant linear and non-linear Bézier abstractions are compared with each
other. The linear abstraction produces 13 distinct segments (Table F.2) in contrast to the non-linear
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(a) (b)

(c)

Figure F.1: (a) Structure of Clostridium Beijerinckii Flavodoxin: oxidized (wwPDB code 5NLL) shown
in a cartoon representation with standard secondary structures – helices and strands of sheet assigned
using DSSP (Kabsch and Sander, 1983). (b) Traditional representation of the folding pattern which
replaces each secondary structural element with line segments. (c) The representations produced by
our approach by constraining the Bézier curves to a maximum degree of 1 – Linear (left frame), and
maximum degree of 3 – Linear through to Cubic (right frame).
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Table F.1: The linear segmentation of 5NLL obtained by approximating the helices and strands by
straight line segments (see Figure F.1b).

Segment Residue Segment Residue
index stretch index stretch

1 2 – 6 7 66 – 73
2 11 – 25 8 81 – 88
3 31 – 34 9 94 – 105
4 35 – 37 10 109 – 110
5 40 – 43 11 115 – 118
6 48 – 53 12 122 – 136

Table F.2: The linear Bézier segmentation pro-
duced for Flavodoxin (5NLL).

Segment Residue Segment Residue
index stretch index stretch

1 1 – 8 8 79 – 89
2 8 – 26 9 89 – 107
3 26 – 37 10 107 – 109
4 37 – 46 11 109 – 119
5 46 – 56 12 119 – 122
6 56 – 72 13 122 – 138
7 72 – 79

Table F.3: The non-linear Bézier segmentation
produced for Flavodoxin (5NLL).

Segment Residue Segment Residue
index stretch index stretch

1 1 – 9 6 58 – 79
2 9 – 27 7 79 – 89
3 27 – 34 8 89 – 107
4 34 – 47 9 107 – 109
5 47 – 58 10 109 – 138

version which generates 10 segments (Table F.3). The notable differences in the segmentations are
discussed below.

• Segment 1 (Figure F.3) is abstracted by a quadratic curve while the same segment in Figure F.2
is abstracted by a straight line.

• Segment 3 (Figure F.2) is represented by a straight line that approximates the S-shaped pattern
between the residues 26 and 37. However, in Figure F.3, segment 3 is a non-linear curve that
approximates the curved region between residues 27 and 34. The curvature between residues 34
and 37 forms the beginning of segment 4, shown in Figure F.3(4).

• The curved section between the residue stretch 46 and 56 is inaccurately represented by a
straight line in Figure F.2(5), whereas the same region is represented by a quadratic curve in
Figure F.3(5).

• The residue stretch 56 – 79 is represented using two line segments (see segments 6 and 7 in
Figure F.2). The same curved region is represented by a quadratic curve in Figure F.3(6).

• The curved region (residues 81 – 88) is represented by a straight line in Figure F.2(8), whereas
it is rightly represented by a quadratic curve in Figure F.3(7).

• The region between residues 109 – 138 consists of a helix and a strand of sheet as per the DSSP
assigned secondary structure representation. This portion is partitioned by three straight lines in
the linear representation shown in Figure F.2(10)-(12), whereas it is abstracted as one non-linear
curve in the non-linear Bézier segmentation in Figure F.3(10).
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (11) (12) (13)

Figure F.2: Linear Bézier abstractions of 5NLL (segment 10 is not shown above as it contains only
two residues).
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10)

Figure F.3: Non-linear Bézier abstractions of 5NLL. Note how the curved sections of the protein are
losslessly represented by the corresponding non-linear curves.
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(a) (b)

(c) (d)

Figure F.4: (a) Structure of α1-Antitrypsin (wwPDB code 1QLP) shown in a cartoon representation
with standard secondary structures – helices and strands of sheet assigned using DSSP Kabsch and
Sander (1983). (b) Traditional representation of the folding pattern which replaces each secondary
structural element with line segments. (c) The representations produced by our approach by constrain-
ing the Bézier curves to a maximum degree of 1. (d) The representations produced by constraining
the Bézier curves to a maximum degree of 3 – Linear through to Cubic

F.2.2 Dissection of regions of α1-Antitrypsin: A canonical template for active
Serpins

Another example is presented here to illustrate the nature of the dissections generated using the pro-
posed approach, using (randomly chosen) α1-Antitrypsin molecule (Elliott et al., 2000) with wwPDB
code 1QLP. Only the coordinates of protein residues of chain A (in the range 23 – 394) of this molecule
are established. As such, the number of residues considered are 372. We have shown the cartoon dia-
gram of the secondary structure assigned using DSSP (see Figure F.4a). The approximation of helices
and strands by straight lines results in a representation as shown in Figure F.4(b). Also shown are
the linear and non-linear Bézier segmentations generated by out method. (Figures F.4(c) and (d)
respectively).

The approximation of secondary structural elements by straight lines (Figure F.4b) represents only
219 of the 372 residues accounting to about 59% of the entire residue range. Such a representation
is lossy in the sense that nearly 41% of the protein geometry goes unrepresented. These regions are
disordered and hence, the secondary structure assignment methods cannot identify clear structural
patterns. The large proportion of undesignated region is a cause for concern because it shows the
limitation of representation schemes which rely on secondary structure assignment.
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Our Bézier segmentation approach is immune to this problem and completely represent the protein
structure. The linear Bézier abstraction results in 39 segments while the non-linear Bézier abstrac-
tion results in 26 segments. The resultant non-linear segmentation is listed in Table F.4. Some of
the distinctively curved regions of the protein and their corresponding non-linear representations are
depicted in Figure F.5.

Table F.4: The non-linear Bézier segmentation produced by our method for α1-Antitrypsin (1QLP).
Segment Residue Segment Residue

index stretch index stretch

1 23 – 24 14 225 – 236
2 24 – 45 15 236 – 246
3 45 – 69 16 246 – 257
4 69 – 88 17 257 – 279
5 88 – 108 18 279 – 289
6 108 – 123 19 289 – 305
7 123 – 149 20 305 – 324
8 149 – 166 21 324 – 343
9 166 – 179 22 343 – 346
10 179 – 195 23 346 – 359
11 195 – 211 24 359 – 378
12 211 – 213 25 378 – 393
13 213 – 225 26 393 – 394
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Figure F.5: A selection of some of the non-linear Bézier segments of 1QLP. The segments numbered
above correspond to the ones listed in Table F.4.


