
COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969

This material has been reproduced and communicated to you by or on
behalf of Monash University pursuant to Part VB of the Copyright Act
1968 (the Act). The material in this communication may be subject to
copyright under the Act. Any further reproduction or communication of
this material by you may be the subject of copyright protection under the

Act. Do not remove this notice

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 1 / 39

Prepared by: [Arun Konagurthu]

FIT3155: Advanced Algorithms and Data Structures
Week 3: Burrows-Wheeler Transform (BWT) and efficient string

pattern matching

Faculty of Information Technology, Monash University

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 2 / 39

https://research.monash.edu/en/persons/arun-konagurthu

What is covered in this lecture?

Burrows-Wheeler Transform (BWT) of Strings

Inverting a BWT

Efficient pattern matching using BWT as an index

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 3 / 39

References

Part I

Michael Burrows and David J Wheeler. A block-sorting lossless data
compression algorithm. 1994.

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures
with applications. In the proceedings of the 41st Annual Symposium
on Foundations of Computer Science. 2000.

Part II

Paolo Ferragina and Giovanni Manzini. Opportunistic data structures
with applications. In the proceedings of the 41st Annual Symposium
on Foundations of Computer Science. 2000.

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 4 / 39

Revise Suffix array if you have forgotten!

This lecture will build on your understanding of the Suffix Array
data structure introduced in FIT2004.

If you have forgotten how to construct a suffix array of a given
string, revise the prefix-doubling algorithm taught in FIT2004.

Heads up: After the end of (next) week 4’s content, you should be
able to construct a suffix array in linear time in the length of a given
string.

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 5 / 39

PART I: Burrows-Wheeler Transform (BWT)

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 6 / 39

Burrows-Wheeler Transform (BWT) of a string

1 2 3 4 5 6 7

Reference string/text: g o o g o l $

M =

SA F L
↓ ↓ ↓
7 $ g o o g o l
4 g o l $ g o o
1 g o o g o l $
6 l $ g o o g o
3 o g o l $ g o
5 o l $ g o o g
2 o o g o l $ g

≡

SA F L
↓ ↓ ↓
7 $ g o o g o l
4 g o l $ g o o
1 g o o g o l $
6 l $ g o o g o
3 o g o l $ g o
5 o l $ g o o g
2 o o g o l $ g

BWT definition

The string formed by letters in the last column (L) of the (sorted) cyclic
permutation matrix (M) is the Burrows-Wheeler Transform of the text.

Equivalently, it is also the string formed by the (cyclically) previous letters to
the letters in the first column (F). (In other words, subtracting one from the
the suffix array (indexes) gives you the information of the last column.)

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 7 / 39

Matrix M – Property 1

Any column of the (sorted) cyclic permutation matrix M is a
permutation of S[1...n]

Example

S[1...n] = g o o g o l $

M =

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

E.g., o l o g o $ g is a permutation of the org. string g o o g o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 8 / 39

Matrix M – Property 2

Any 2 successive columns of the (sorted) cyclic permutation matrix M
gives the permutation of all 2-mers (substrings of size 2) in S[1...n]

Example

S[1...n] = g o o g o l $

M =

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

E.g., oo, l$, og, go, ol, $g, go, is a permutation of 2-mers of S ,
go, oo, og, go, ol, l$, $g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 9 / 39

Matrix M – Property 2 (corollary)

Since M is a matrix of (sorted) cyclic permutations, the last column L
precedes the first column F .

Example

S = g o o g o l $

M =

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

↑ ↑
F L

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 10 / 39

Matrix M – General property

General property

Any k successive columns of the (sorted) cyclic permutation matrix M
give the permutation of all k-mers in S[1...n]

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 11 / 39

Property: BWT(S) is invertible!!!

BWT(S)

BWT is invertible.

This implies that we can throw away the original reference string S ,
and reconstruct S from BWT(S).a

We will use the notation BWT−1 to denote the inverse of a BWT
of a string. By inverse it is implied that BWT−1(BWT(S)) = S

aThis is magical if you think about this!

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 12 / 39

Dumb method to invert BWT(S)

Start with the BWT(S). Sort it lexicographically.

Example

l

o

$
o

o

g

g

sort−−→

$
g

g

l

o

o

o

The matrix below is given here
only as a reference for you to
eyeball the reconstruction.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

This reconstructs the first column of the matrix M.

But we know that the first column succeeds (comes after) the last
(BWT) column (in a cyclic way)...

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 13 / 39

Dumb method to invert BWT(S)
We just reconstructed the first column of M. But we also have the last BWT column with us.

Since the first column succeeds the last, append the two columns in their natural (cyclic) order,

and sort the letters lexicographically.

Example

l $
o g

$ g

o l

o o

g o

g o

sort−−→

$ g

g o

g o

l $
o g

o l

o o

The matrix below is given here
only as a reference for you to
eyeball the reconstruction.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

This reconstructs the first two columns of the matrix M.
But, again, we know that the first two columns succeed the last
(BWT) column (in a cyclic way)...

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 14 / 39

Dumb method to invert BWT(S)
We have now reconstructed the first two columns of M. But, again, we also have the last

BWT column. Since these reconstructed columns succeeds the last column, append the three

columns in their natural (cyclic) order, and sort lexicographically.

Example

l $ g

o g o

$ g o

o l $
o o g

g o l

g o o

sort−−→

$ g o

g o l

g o o

l $ g

o g o

o l $
o o g

The matrix below is given here
only as a reference for you to
eyeball the reconstruction.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

This reconstructs the first three columns of the matrix M.
But, yet again, we know that the first three columns succeed the
last (BWT) column (in a cyclic way)...

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 15 / 39

Dumb method to invert BWT(S)

Iteratively appending the BWT column to reconstructed columns before sorting them over n
iterations generates the full matrix M of cyclic permutations. The original string S[1 . . . n]$ is
simply the first row of M.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

The naive approach is highly inefficient in both space and time, so you should NOT use it
in practice. When the reference string is long, this naive approach becomes intractable.

So, let’s now look at an efficient method to invert a BWT(S).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 16 / 39

LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8

L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???
Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i] would appear in
the first column (F)?
Punchline: If any L[i] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 17 / 39

LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8
L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???

Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i] would appear in
the first column (F)?
Punchline: If any L[i] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 17 / 39

LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8
L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???
Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i] would appear in
the first column (F)?

Punchline: If any L[i] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 17 / 39

LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8
L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???
Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i] would appear in
the first column (F)?
Punchline: If any L[i] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 17 / 39

LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8
L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???
Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i] would appear in
the first column (F)?
Punchline: If any L[i] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 17 / 39

LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8
L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???
Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i] would appear in
the first column (F)?
Punchline: If any L[i] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 17 / 39

A crucial observation to automate LF -mapping (Example)

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

Letter ‘o’ appear 3 times in the Last/BWT column L in the example above, at positions
i1 = 2, i2 = 4, i3 = 5.

L[i1] maps to F [5], L[i2] maps to F [6], and finally L[i3] maps to F [5] – the mapping of all
‘o’s points to 3 consecutive rows in M starting position pos = 5 = Rank(‘o’).

For those positions, we see F [i1] = ‘g’,F [i2] = ‘l’,F [i3] = ‘o’ be their corresponding
letters (in that order) in the first column F .

Did you notice, these letters appear in the second column in the same order after the
(block/run of) ‘o’s that appear in the first column of M?

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 18 / 39

A crucial observation to automate LF -mapping (formalism)
First Last
↓ ↓
... · · · · · · · · ·

...
F [i1] · · · · · · · · · L[i1] = x
... · · · · · · · · ·

...
F [i2] · · · · · · · · · L[i2] = x
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
F [i3] · · · · · · · · · L[i3] = x

First Second Last
↓ ↓
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
x = F [pos] F [i1] · · · · · · L[pos]
x = F [pos + 1] F [i2] · · · · · · L[pos + 1]
x = F [pos + 2] F [i3] · · · · · · L[pos + 2]
... · · · · · · · · ·

...

Let the letter x appear k ≥ 1 times in BWT column L, at position i1, i2, . . . , ik respectively. (In
the above illustration k = 3.) Let F [i1],F [i2], · · ·F [ik] be their corresponding letters (in that
order) in the first column F .

Observation:
There will have to be k consecutive rows in the sorted cyclic permulation matrix M starting
position pos = Rank(x), where all identical x would appear in a run-block, such that the second
character after each x will have to be the letters F [i1],F [i2], · · ·F [ik] in that order.

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 19 / 39

Crucial rule to undertake LF -mapping

The observation on Slide #19 underpins LF-mapping, and hence the
backwards reconstruction of S from BWT(S).

For any letter L[i] = ‘x ’ in the last or BWT column L, there has to be
a suffix starting with this specific x in the first column F at some
position/index ‘pos’ in F . That is, F [pos] = x :

Crucial Formula to find this ‘pos’

pos = Rank(x) + nOccurrences(x , L[1...i))

Rank(x) = The position where x first appears in F
nOccurrences(x , L[1..i)) = number of times x appears in L[1...i).a

aThe range [1...i) in L is EXCLUSIVE of i

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 20 / 39

Example – Find ‘pos’ in F of the character ‘o’ @ L[4]

pos = Rank(x) + nOccurrences(x , L[1...i))

Pos

1 $ g o o g o l
2 g o l $ g o o
3 g o o g o l $
4 l $ g o o g o ←
5 o g o l $ g o
6 o l $ g o o g
7 o o g o l $ g

Pos

1 $ g o o g o l
2 g o l $ g o o
3 g o o g o l $
4 l $ g o o g o
5 o g o l $ g o

→ 6 o l $ g o o g
7 o o g o l $ g

Symbol $ g l o

Rank 1 2 4 5

Rank(L[4] = ’o’) = 5
nOccurrences(’o’, L[1..4)) = 1

pos = 6

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 21 / 39

Recovering the full original string from BWT(S) (in
backwards direction)

What information we currently have

BWT(S) = l o $ o o g g
Symbol $ g l o

Rank 1 2 4 5

Inversion of BWT starts

backwards: · · · ←l← $

Set i = 1.
L[i] =‘l’. The letter preceding this
first letter in L has to be $ (always!).
Compute pos where this specific
symbol ‘l’ would appear in F .
Rank(L[i] ≡ ‘l’) = 4
nOccurrences(‘l’, L[1..i)) = 0
pos = 4

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 22 / 39

Recovering the full original string from BWT(S) (in
backwards direction)

What information we currently have

BWT(S) = l o $ o o g g
Symbol $ g l o

Rank 1 2 4 5

Inversion of BWT starts

backwards: · · · ←l← $

Set i = 1.
L[i] =‘l’. The letter preceding this
first letter in L has to be $ (always!).
Compute pos where this specific
symbol ‘l’ would appear in F .
Rank(L[i] ≡ ‘l’) = 4
nOccurrences(‘l’, L[1..i)) = 0
pos = 4

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 22 / 39

Recovering the full original string from BWT(S) (in
backwards direction)

What information we currently have

BWT(S) = l o $ o o g g
Symbol $ g l o

Rank 1 2 4 5

Inversion of BWT starts

backwards: · · · ←l← $

Set i = 1.

L[i] =‘l’. The letter preceding this
first letter in L has to be $ (always!).
Compute pos where this specific
symbol ‘l’ would appear in F .
Rank(L[i] ≡ ‘l’) = 4
nOccurrences(‘l’, L[1..i)) = 0
pos = 4

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 22 / 39

Recovering the full original string from BWT(S) (in
backwards direction)

What information we currently have

BWT(S) = l o $ o o g g
Symbol $ g l o

Rank 1 2 4 5

Inversion of BWT starts

backwards: · · · ←l← $

Set i = 1.
L[i] =‘l’. The letter preceding this
first letter in L has to be $ (always!).

Compute pos where this specific
symbol ‘l’ would appear in F .
Rank(L[i] ≡ ‘l’) = 4
nOccurrences(‘l’, L[1..i)) = 0
pos = 4

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 22 / 39

Recovering the full original string from BWT(S) (in
backwards direction)

What information we currently have

BWT(S) = l o $ o o g g
Symbol $ g l o

Rank 1 2 4 5

Inversion of BWT starts

backwards: · · · ←l← $

Set i = 1.
L[i] =‘l’. The letter preceding this
first letter in L has to be $ (always!).
Compute pos where this specific
symbol ‘l’ would appear in F .
Rank(L[i] ≡ ‘l’) = 4
nOccurrences(‘l’, L[1..i)) = 0
pos = 4

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 22 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 23 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 23 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 23 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 23 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 23 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

o l $

Now reset i = pos = 4
Rank(L[i] = ‘o’) = 5
nOccurrences(‘o’, L[1..4)) = 1
(new) pos = 6
L[pos] = g

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) g o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 24 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

g o l $

reset i = pos = 6
Rank(L[i] = ‘g’) = 2
nOccurrences(‘g’, L[1..6)) = 0
(new) pos = 2
L[pos] = o

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) o g o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 25 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

o g o l $

Reset i = pos = 2
Rank(L[i] = ‘o’) = 5
nOccurrences(‘o’, L[1..2)) = 0
(new) pos = 5
L[pos] = o

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) o o g o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 26 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

o o g o l $

Reset i = pos = 5
Rank(L[i] = ‘o’) = 5
nOccurrences(‘o’, L[1..5)) = 2
(new) pos = 7
L[pos] = g

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) g o o g o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 27 / 39

Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

g o o g o l $

Reset i = pos = 7
Rank(L[i] = ‘g’) = 2
nOccurrences(‘g’, L[1..7)) = 1
(new) pos = 3
L[pos] = $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

When $ is encounted, STOP!!!. Full string has been reconstructed.

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 28 / 39

Part II: Exact pattern matching using BWT

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 29 / 39

Summary of slides so far...

We understood what BWT is and how to invert it.

Recall, we introduced string pattern matching in weeks 1-2. We saw:
▶ Näıve algorithm takes O(m ∗ n)-time, worst-case
▶ Z-algorithm, BM, KMP all have a worst-case that takes O(m+n)-time.

Question to consider

Assume we have a very very big text, and a large number very
very short patterns to search in that text for exact matches. Would
the above algorithms for pattern matching be useful?

In the subsequent slides...

You will see how Burrows-Wheelers Transform of any large reference text
can be used to address this question effectively and efficiently – this
algorithm is as beautiful as things can get in data structures and
algorithms!

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 30 / 39

Does pat[1...m] appear in txt[1...n]? If so, How
many times?

Number of times a pattern appears in some reference text is called
multiplicity.

Assume that we have preprocessed txt[1...n] to obtain its BWT.
Then pattern matching becomes rather straight-forward, and requires
backward search on pat[1...m]

Initialize two pointers on BWT of txt:
▶ sp = 1 (for start of the range)
▶ ep = n (for end of the range)

these pointers are updated using the rules:
▶ sp = rank(pat[i]) + nOccurrences(pat[i], L[1...sp))
▶ ep = rank(pat[i]) + nOccurrences(pat[i], L[1...ep]) - 1 *

*ALERT!!! In the ep computation above, the range L[1...ep] is INCLUSIVE of ep. In
the previous case (for sp), it was EXCLUSIVE.
(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 31 / 39

Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Initialize pointers sp to 1 and ep to n = 7.

SA Pos L
↓ ↓ ↓
7 1 $ g o o g o l ← sp
4 2 g o l $ g o o
1 3 g o o g o l $
6 4 l $ g o o g o
3 5 o g o l $ g o
5 6 o l $ g o o g
2 7 o o g o l $ g ← ep

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 32 / 39

Example of pattern matching on BWT

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

sp = rank(pat[i]) + nOccurrences(pat[i], L[1...sp))
ep = rank(pat[i]) + nOccurrences(pat[i], L[1...ep]) - 1

Initialize sp = 1 ep = 7 i = m = 2

Search pat[1...m] backwards.
So, start with pat[m=2] = ’o’
rank(o) = 5 nOccurrences(o,L[1...sp)) = 0 nOccurrences(o,L[1...ep]) = 3
(updated) sp = 5 + 0 (updated) ep = 5 + 3 -1
These updated pointers give the range (in M) of all suffixes starting with
o.
(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 33 / 39

Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Updated sp and ep illustration after searching for o is completed (see
previous slide).

SA Pos L

↓ ↓ ↓
7 1 $ g o o g o l

4 2 g o l $ g o o

1 3 g o o g o l $
6 4 l $ g o o g o

3 5 o g o l $ g o ← sp

5 6 o l $ g o o g

2 7 o o g o l $ g ← ep

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 34 / 39

Example of pattern matching on BWT

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

sp = rank(pat[i]) + nOccurrences(pat[i], L[1...sp))
ep = rank(pat[i]) + nOccurrences(pat[i], L[1...ep]) - 1

Current sp = 5 ep = 7

Continue searching backwards on the pattern. Now for pat[1] = ’g’
rank(g) = 2 nOccurrences(g,L[1...sp)) = 0 nOccurrences(g,L[1...ep]) = 2
(updated) sp = 2 + 0 (updated) ep = 2 + 2 -1 = 3
These updated pointers give the range of all suffixes starting with go.

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 35 / 39

Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Updated sp and ep illustration after searching for g is completed (see
previous slide).

SA Pos L

↓ ↓ ↓
7 1 $ g o o g o l

4 2 g o l $ g o o ← sp

1 3 g o o g o l $ ← ep

6 4 l $ g o o g o

3 5 o g o l $ g o

5 6 o l $ g o o g

2 7 o o g o l $ g

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 36 / 39

Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Once the entire pat[m. . . 1] is searched backwards, the resulting
updated sp and ep values give the range of positions (in M) which all
start with pat[1. . . m].

Multiplicity = ep - sp +1. In this example, Multiplicity of “go” in
the reference text is 3− 2 + 1 = 2

Note, Multiplicity = 0 (i.e., no occurrences found), when ep<sp

To identify the positions in txt[1. . . n] where the pattern occurs, if
any, simply look up the suffix array indexes in the range [sp,ep].

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 37 / 39

Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

SA Pos L
↓ ↓ ↓
7 1 $ g o o g o l
4 2 g o l $ g o o ← sp
1 3 g o o g o l $ ← ep
6 4 l $ g o o g o
3 5 o g o l $ g o
5 6 o l $ g o o g
2 7 o o g o l $ g

Multiplicity= ep - sp + 1 = 3− 2 + 1 = 2
Where does the pat[1...m] occur in txt[1...n]?
Lookup the corresp. SA in the range [sp..ep]: positions 4 and 1 in the
reference text (these positions will be unordered, but correct!).
(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 38 / 39

Exact pattern matching – Summary

Naive algorithm: O(m ∗ n)-time, worst-case

Z-algorithm, Boyer-Moore, KMP: O(n)-time worst-case

Using BWT (with O(n) auxiliary space): O(m)-time

In the next lecture...

Linear-time Suffix Tree (and suffix array) construction using Ukkonen’s
algorithm

-=o0o=-

END

-=o0o=-

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 39 / 39

