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What is covered in this lecture?

Burrows-Wheeler Transform (BWT) of Strings

Inverting a BWT

Efficient pattern matching using BWT as an index
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Revise Suffix array if you have forgotten!

This lecture will build on your understanding of the Suffix Array
data structure introduced in FIT2004.

If you have forgotten how to construct a suffix array of a given
string, revise the prefix-doubling algorithm taught in FIT2004.

Heads up: After the end of (next) week 4’s content, you should be
able to construct a suffix array in linear time in the length of a given
string.
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PART I: Burrows-Wheeler Transform (BWT)
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Burrows-Wheeler Transform (BWT) of a string

1 2 3 4 5 6 7

Reference string/text: g o o g o l $

M =

SA F L
↓ ↓ ↓
7 $ g o o g o l
4 g o l $ g o o
1 g o o g o l $
6 l $ g o o g o
3 o g o l $ g o
5 o l $ g o o g
2 o o g o l $ g

≡

SA F L
↓ ↓ ↓
7 $ g o o g o l
4 g o l $ g o o
1 g o o g o l $
6 l $ g o o g o
3 o g o l $ g o
5 o l $ g o o g
2 o o g o l $ g

BWT definition

The string formed by letters in the last column (L) of the (sorted) cyclic
permutation matrix (M) is the Burrows-Wheeler Transform of the text.

Equivalently, it is also the string formed by the (cyclically) previous letters to
the letters in the first column (F ). (In other words, subtracting one from the
the suffix array (indexes) gives you the information of the last column.)
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Matrix M – Property 1

Any column of the (sorted) cyclic permutation matrix M is a
permutation of S[1...n]

Example

S[1...n] = g o o g o l $

M =

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

E.g., o l o g o $ g is a permutation of the org. string g o o g o l $
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Matrix M – Property 2

Any 2 successive columns of the (sorted) cyclic permutation matrix M
gives the permutation of all 2-mers (substrings of size 2) in S[1...n]

Example

S[1...n] = g o o g o l $

M =

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

E.g., oo, l$, og, go, ol, $g, go, is a permutation of 2-mers of S ,
go, oo, og, go, ol, l$, $g
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Matrix M – Property 2 (corollary)

Since M is a matrix of (sorted) cyclic permutations, the last column L
precedes the first column F .

Example

S = g o o g o l $

M =

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

↑ ↑
F L
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Matrix M – General property

General property

Any k successive columns of the (sorted) cyclic permutation matrix M
give the permutation of all k-mers in S[1...n]

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 11 / 39



Property: BWT(S) is invertible!!!

BWT(S)

BWT is invertible.

This implies that we can throw away the original reference string S ,
and reconstruct S from BWT(S).a

We will use the notation BWT−1 to denote the inverse of a BWT
of a string. By inverse it is implied that BWT−1(BWT(S)) = S

aThis is magical if you think about this!
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Dumb method to invert BWT(S)

Start with the BWT(S). Sort it lexicographically.

Example

l

o

$
o

o

g

g

sort−−→

$
g

g

l

o

o

o

The matrix below is given here
only as a reference for you to
eyeball the reconstruction.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

This reconstructs the first column of the matrix M.

But we know that the first column succeeds (comes after) the last
(BWT) column (in a cyclic way)...
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Dumb method to invert BWT(S)
We just reconstructed the first column of M. But we also have the last BWT column with us.

Since the first column succeeds the last, append the two columns in their natural (cyclic) order,

and sort the letters lexicographically.

Example

l $
o g

$ g

o l

o o

g o

g o

sort−−→

$ g

g o

g o

l $
o g

o l

o o

The matrix below is given here
only as a reference for you to
eyeball the reconstruction.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

This reconstructs the first two columns of the matrix M.
But, again, we know that the first two columns succeed the last
(BWT) column (in a cyclic way)...
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Dumb method to invert BWT(S)
We have now reconstructed the first two columns of M. But, again, we also have the last

BWT column. Since these reconstructed columns succeeds the last column, append the three

columns in their natural (cyclic) order, and sort lexicographically.

Example

l $ g

o g o

$ g o

o l $
o o g

g o l

g o o

sort−−→

$ g o

g o l

g o o

l $ g

o g o

o l $
o o g

The matrix below is given here
only as a reference for you to
eyeball the reconstruction.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

This reconstructs the first three columns of the matrix M.
But, yet again, we know that the first three columns succeed the
last (BWT) column (in a cyclic way)...
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Dumb method to invert BWT(S)

Iteratively appending the BWT column to reconstructed columns before sorting them over n
iterations generates the full matrix M of cyclic permutations. The original string S[1 . . . n]$ is
simply the first row of M.

M =

$ g o o g o l
g o l $ g o o
g o o g o l $
l $ g o o g o
o g o l $ g o
o l $ g o o g
o o g o l $ g

The naive approach is highly inefficient in both space and time, so you should NOT use it
in practice. When the reference string is long, this naive approach becomes intractable.

So, let’s now look at an efficient method to invert a BWT(S).
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LF-mapping: Relationship between the Last Column (L) and First Column

(F) of the matrix M

Each letter that appears in the last (or BWT) column L can be mapped to a corresponding letter in the first column (F)
– see property 1 on Slide 8

L[1] has to be the final letter (S[n]) of the original string S[1 . . . n] (i.e., the letter preceding the artificial terminal
symbol $)– why???
Without reconstructing the First column (F) (or any other columns for that matter), and solely with the
information in the last/BWT column (L), can we compute at which position/index (pos) any L[i ] would appear in
the first column (F)?
Punchline: If any L[i ] maps to some F [pos], then L[pos] has to be its preceding letter due to the property discussed on
Slide 10

In general, this LF-mapping can be used to recover the original string S (one letter at a time, in the backwards direction
starting from the last letter S[n]).
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A crucial observation to automate LF -mapping (Example)

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

$ g o o g o l

g o l $ g o o

g o o g o l $
l $ g o o g o

o g o l $ g o

o l $ g o o g

o o g o l $ g

Letter ‘o’ appear 3 times in the Last/BWT column L in the example above, at positions
i1 = 2, i2 = 4, i3 = 5.

L[i1] maps to F [5], L[i2] maps to F [6], and finally L[i3] maps to F [5] – the mapping of all
‘o’s points to 3 consecutive rows in M starting position pos = 5 = Rank(‘o’).

For those positions, we see F [i1] = ‘g’,F [i2] = ‘l’,F [i3] = ‘o’ be their corresponding
letters (in that order) in the first column F .

Did you notice, these letters appear in the second column in the same order after the
(block/run of) ‘o’s that appear in the first column of M?
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A crucial observation to automate LF -mapping (formalism)
First Last
↓ ↓
... · · · · · · · · ·

...
F [i1] · · · · · · · · · L[i1] = x
... · · · · · · · · ·

...
F [i2] · · · · · · · · · L[i2] = x
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
F [i3] · · · · · · · · · L[i3] = x

First Second Last
↓ ↓
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
... · · · · · · · · ·

...
x = F [pos] F [i1] · · · · · · L[pos]
x = F [pos + 1] F [i2] · · · · · · L[pos + 1]
x = F [pos + 2] F [i3] · · · · · · L[pos + 2]
... · · · · · · · · ·

...

Let the letter x appear k ≥ 1 times in BWT column L, at position i1, i2, . . . , ik respectively. (In
the above illustration k = 3.) Let F [i1],F [i2], · · ·F [ik ] be their corresponding letters (in that
order) in the first column F .

Observation:
There will have to be k consecutive rows in the sorted cyclic permulation matrix M starting
position pos = Rank(x), where all identical x would appear in a run-block, such that the second
character after each x will have to be the letters F [i1],F [i2], · · ·F [ik ] in that order.
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Crucial rule to undertake LF -mapping

The observation on Slide #19 underpins LF-mapping, and hence the
backwards reconstruction of S from BWT(S).

For any letter L[i ] = ‘x ’ in the last or BWT column L, there has to be
a suffix starting with this specific x in the first column F at some
position/index ‘pos’ in F . That is, F [pos] = x :

Crucial Formula to find this ‘pos’

pos = Rank(x) + nOccurrences(x , L[1...i))

Rank(x) = The position where x first appears in F
nOccurrences(x , L[1..i)) = number of times x appears in L[1...i).a

aThe range [1...i) in L is EXCLUSIVE of i
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Example – Find ‘pos’ in F of the character ‘o’ @ L[4]

pos = Rank(x) + nOccurrences(x , L[1...i))

Pos

1 $ g o o g o l
2 g o l $ g o o
3 g o o g o l $
4 l $ g o o g o ←
5 o g o l $ g o
6 o l $ g o o g
7 o o g o l $ g

Pos

1 $ g o o g o l
2 g o l $ g o o
3 g o o g o l $
4 l $ g o o g o
5 o g o l $ g o

→ 6 o l $ g o o g
7 o o g o l $ g

Symbol $ g l o

Rank 1 2 4 5

Rank(L[4] = ’o’) = 5
nOccurrences(’o’, L[1..4)) = 1

pos = 6
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Recovering the full original string from BWT(S) (in
backwards direction)

What information we currently have

BWT(S) = l o $ o o g g
Symbol $ g l o

Rank 1 2 4 5

Inversion of BWT starts

backwards: · · · ←l← $

Set i = 1.
L[i ] =‘l’. The letter preceding this
first letter in L has to be $ (always!).
Compute pos where this specific
symbol ‘l’ would appear in F .
Rank(L[i ] ≡ ‘l’) = 4
nOccurrences(‘l’, L[1..i)) = 0
pos = 4

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g
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Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $
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letter in the backwards direction.

Reconstructed string (so far) o l $
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Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

l $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

We now have the LF-mapping of the
letter ‘l’. How?

F [pos=4] is the same letter as
L[i = 1] (from previous slide).

L[pos] will precede F [pos] in
the reference string.

This gives the mapping to
reconstruct/recover one more
letter in the backwards direction.

Reconstructed string (so far) o l $
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Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

o l $

Now reset i = pos = 4
Rank(L[i ] = ‘o’) = 5
nOccurrences(‘o’, L[1..4)) = 1
(new) pos = 6
L[pos] = g

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) g o l $
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Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

g o l $

reset i = pos = 6
Rank(L[i ] = ‘g’) = 2
nOccurrences(‘g’, L[1..6)) = 0
(new) pos = 2
L[pos] = o

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) o g o l $
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Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

o g o l $

Reset i = pos = 2
Rank(L[i ] = ‘o’) = 5
nOccurrences(‘o’, L[1..2)) = 0
(new) pos = 5
L[pos] = o

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) o o g o l $

(FIT3155 S2 2024, Monash University) W3: BWT and pattern matching 26 / 39



Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

o o g o l $

Reset i = pos = 5
Rank(L[i ] = ‘o’) = 5
nOccurrences(‘o’, L[1..5)) = 2
(new) pos = 7
L[pos] = g

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

Reconstructed string (so far) g o o g o l $
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Recovering the original string from BWT(S)

What information we currently have

1 2 3 4 5 6 7
BWT(S) l o $ o o g g

Symbol $ g l o

Rank 1 2 4 5
Reconstructed string (so far)

g o o g o l $

Reset i = pos = 7
Rank(L[i ] = ‘g’) = 2
nOccurrences(‘g’, L[1..7)) = 1
(new) pos = 3
L[pos] = $

Pos

1 $ g o o g o l

2 g o l $ g o o

3 g o o g o l $
4 l $ g o o g o

5 o g o l $ g o

6 o l $ g o o g

7 o o g o l $ g

When $ is encounted, STOP!!!. Full string has been reconstructed.
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Part II: Exact pattern matching using BWT
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Summary of slides so far...

We understood what BWT is and how to invert it.

Recall, we introduced string pattern matching in weeks 1-2. We saw:
▶ Näıve algorithm takes O(m ∗ n)-time, worst-case
▶ Z-algorithm, BM, KMP all have a worst-case that takes O(m+n)-time.

Question to consider

Assume we have a very very big text, and a large number very
very short patterns to search in that text for exact matches. Would
the above algorithms for pattern matching be useful?

In the subsequent slides...

You will see how Burrows-Wheelers Transform of any large reference text
can be used to address this question effectively and efficiently – this
algorithm is as beautiful as things can get in data structures and
algorithms!
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Does pat[1...m] appear in txt[1...n]? If so, How
many times?

Number of times a pattern appears in some reference text is called
multiplicity.

Assume that we have preprocessed txt[1...n] to obtain its BWT.
Then pattern matching becomes rather straight-forward, and requires
backward search on pat[1...m]

Initialize two pointers on BWT of txt:
▶ sp = 1 (for start of the range)
▶ ep = n (for end of the range)

these pointers are updated using the rules:
▶ sp = rank(pat[i]) + nOccurrences(pat[i], L[1...sp))
▶ ep = rank(pat[i]) + nOccurrences(pat[i], L[1...ep]) - 1 *

*ALERT!!! In the ep computation above, the range L[1...ep] is INCLUSIVE of ep. In
the previous case (for sp), it was EXCLUSIVE.
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Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Initialize pointers sp to 1 and ep to n = 7.

SA Pos L
↓ ↓ ↓
7 1 $ g o o g o l ← sp
4 2 g o l $ g o o
1 3 g o o g o l $
6 4 l $ g o o g o
3 5 o g o l $ g o
5 6 o l $ g o o g
2 7 o o g o l $ g ← ep
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Example of pattern matching on BWT

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

sp = rank(pat[i]) + nOccurrences(pat[i], L[1...sp))
ep = rank(pat[i]) + nOccurrences(pat[i], L[1...ep]) - 1

Initialize sp = 1 ep = 7 i = m = 2

Search pat[1...m] backwards.
So, start with pat[m=2] = ’o’
rank(o) = 5 nOccurrences(o,L[1...sp)) = 0 nOccurrences(o,L[1...ep]) = 3
(updated) sp = 5 + 0 (updated) ep = 5 + 3 -1
These updated pointers give the range (in M) of all suffixes starting with
o.
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Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Updated sp and ep illustration after searching for o is completed (see
previous slide).

SA Pos L

↓ ↓ ↓
7 1 $ g o o g o l

4 2 g o l $ g o o

1 3 g o o g o l $
6 4 l $ g o o g o

3 5 o g o l $ g o ← sp

5 6 o l $ g o o g

2 7 o o g o l $ g ← ep
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Example of pattern matching on BWT

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

sp = rank(pat[i]) + nOccurrences(pat[i], L[1...sp))
ep = rank(pat[i]) + nOccurrences(pat[i], L[1...ep]) - 1

Current sp = 5 ep = 7

Continue searching backwards on the pattern. Now for pat[1] = ’g’
rank(g) = 2 nOccurrences(g,L[1...sp)) = 0 nOccurrences(g,L[1...ep]) = 2
(updated) sp = 2 + 0 (updated) ep = 2 + 2 -1 = 3
These updated pointers give the range of all suffixes starting with go.
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Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Updated sp and ep illustration after searching for g is completed (see
previous slide).

SA Pos L

↓ ↓ ↓
7 1 $ g o o g o l

4 2 g o l $ g o o ← sp

1 3 g o o g o l $ ← ep

6 4 l $ g o o g o

3 5 o g o l $ g o

5 6 o l $ g o o g

2 7 o o g o l $ g
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Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

Once the entire pat[m. . . 1] is searched backwards, the resulting
updated sp and ep values give the range of positions (in M) which all
start with pat[1. . . m].

Multiplicity = ep - sp +1. In this example, Multiplicity of “go” in
the reference text is 3− 2 + 1 = 2

Note, Multiplicity = 0 (i.e., no occurrences found), when ep<sp

To identify the positions in txt[1. . . n] where the pattern occurs, if
any, simply look up the suffix array indexes in the range [sp,ep].
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Computing Multiplicity and Occurrences

pat[1...m] = g o // pattern

txt[1...n] = g o o g o l $ // reference text

pos = 1 2 3 4 5 6 7 // array index

L[1...n] = l o $ o o g g // BWT of ref. text

suffix index = 7 4 1 6 3 5 2 // suffix array index

SA Pos L
↓ ↓ ↓
7 1 $ g o o g o l
4 2 g o l $ g o o ← sp
1 3 g o o g o l $ ← ep
6 4 l $ g o o g o
3 5 o g o l $ g o
5 6 o l $ g o o g
2 7 o o g o l $ g

Multiplicity= ep - sp + 1 = 3− 2 + 1 = 2
Where does the pat[1...m] occur in txt[1...n]?
Lookup the corresp. SA in the range [sp..ep]: positions 4 and 1 in the
reference text (these positions will be unordered, but correct!).
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Exact pattern matching – Summary

Naive algorithm: O(m ∗ n)-time, worst-case

Z-algorithm, Boyer-Moore, KMP: O(n)-time worst-case

Using BWT (with O(n) auxiliary space): O(m)-time

In the next lecture...

Linear-time Suffix Tree (and suffix array) construction using Ukkonen’s
algorithm

-=o0o=-

END

-=o0o=-
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