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S1 Introduction to MML-based parameter estimation
Strict Minimum Message Length (SMML) inference is an information theoretic criterion introduced by Wallace and Boulton [1975]. It follows the MML
principle strictly in which, the data space is partitioned to nominate a representative model for each partition to minimize the expected two-part message
length. An approximation of the SMML scheme named MML87 was introduced by Wallace and Freeman [1987]. The following section describes how
MML87 is used for estimating multiple continuous parameters, which forms the main methodology of parameter inference and the estimation of encoding
lengths (given in Equation 2-4 in the main text) to achieve the tasks stated in the main text.

Define θ⃗ = [θ1, θ2, ..., θn] with its prior probability distribution as h(θ⃗), likelihood as f(D|θ⃗) and negative likelihood as L(θ⃗) = − log[f(D|θ⃗)].
The area under the curve of h(θ) for a single parameter θ is the probability of the region of uncertainty. Similarly, for multiple parameters, the probability
of the region of uncertainty is a volume V . Let accuracy of parameter value AoPV = Vθ . Then the total transmission message length is as follows.

I(θ⃗, D) = I(θ⃗) + I(D|θ⃗) = − log[h(θ⃗).Vθ] + I(D|θ⃗) (1)

This can be further expanded as follows. (For a detailed step-by-step computation see [Wallace and Wallace, 2005].)

I(θ⃗, D) =
d

2
log[cd]− log[h(θ⃗)] +

1

2
log[det[F (θ)]] + L(θ⃗) +

d

2
(2)

where d is the number of dimensions, cd is the Conway constant [Conway and Sloane, 1984], and det[F (θ)] is the determinant of the expected
Fisher– a matrix of second order partial derivatives of the negative log-likelihood function.

Below, we will first provide an introduction to Dirichlet priors and the next section will explain how Dirichlet priors can be incorporated for estimation
of the encoding lengths in Equation 2 for a set of parameters.

S1.1 Dirichlet distribution

Dirichlet distributions are used in this work to losslessly encode each column vector of M and the transition probabilities of a 3-state machine (over
{match, insert, delete} states). It is the multivariate generalization of the Beta distribution and a commonly used continuous probability distribution
family for prior modeling. The following briefly describes the associated statistics.

Let Dir(α⃗) be a dirichlet distribution with model parameters α⃗ = [α1, α2, . . . , αd] (for αi > 0) that describes a data sample Θ⃗ = [θ1, θ2, . . . , θd],
representing a point in the d− 1 standard unit simplex (i.e.

∑d
i=1 θi = 1). The following intuitive reparameterization of α⃗ extends the insight on how

the distribution concentrates with a concentration parameter κ around its mean vector µ⃗ on the d− 1 simplex.

α⃗ =

(
d∑

i=1

αi

)
︸ ︷︷ ︸

κ

[
α1∑d
i=1 αi

,
α2∑d
i=1 αi

, . . . ,
αd∑d
i=1 αi

]
︸ ︷︷ ︸

µ⃗

The mode vector [x1, x2, . . . , xd] of Dir(α⃗) is defined by xi =
αi−1
κ−d

. The probability density function (pdf) f(Θ⃗|α⃗) of Dir(α⃗) is defined as:

f(Θ⃗|α⃗) =
1

B(α⃗)

d∏
i=1

θ
αi−1
i

1
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where B(α⃗) is the multivariate form of the Beta function. The likelihood over data D with N data samples Θ = [Θ⃗1, Θ⃗2, . . . , Θ⃗N] is defined as

F (D|α⃗) =
N∏

n=1

f(Θ⃗n|α⃗)

Thus, the negative log likelihood function is:

L(Θ|α⃗) = −N log Γ(κ) + N
d∑

i=1

log Γ(αi)−
N∑

n=1

d∑
i=1

(αi − 1) log θn,i

The determinant of the Fisher matrix which indicates how sensitive the expected negative log-likelihood function is, to the changes of α⃗ [Allison,
2018] is:

det[F (α⃗)] = Nd{
d∏

i=1

ψ(αi)}{1− ψi(κ)

(
d∑

i=1

1

ψ1(αi)

)
} (3)

where ψ1(.) is the poly gamma function of order 1 (trigamma function).

S1.1.1 Encoding a probability vector Θ⃗ using Dir(α⃗)

The encoding length of stating α⃗ and Θ⃗ is given by I(α⃗, Θ⃗) = I(α⃗) + I(Θ⃗|α⃗) (see equation 1 and 2) where,

I(α⃗) =
d

2
log[cd]− log[h(α⃗)] +

1

2
log[det[F (α⃗)]] (4)

Here h(α⃗) is the prior on dirichlet parameters α⃗, and cd is the lattice constant [Conway and Sloane, 1984] associated with d degrees of freedom.
det[F (α⃗)] given by Equation 3 is the determinant of the expected Fisher of α⃗.

I(Θ⃗|α⃗) =
d− 1

2
log[cd−1]− log[Dir(Θ⃗; α⃗)] +

1

2
log[det[F (Θ⃗)]] +

d− 1

2
(5)

where Dir(Θ⃗; α⃗) is the Dirichlet prior on Θ⃗, cd−1 is the lattice constant and

det[F (Θ⃗)] =

(∑d
j=1 count(xj)

)d−1

∏d
j=1 θj

(6)

Given the state frequency vector observed in D as {x1, x2, . . . xd}, then
∑d

j=1 count(xj) is the total number of observations combining all states.

S2 Computation of each term in Equation 2 and 3 in the main text

S2.1 Computation of I(M)

M is a time parameterized stochastic Markov matrix over K secondary structural states of size 3× 3 accounting for the secondary structure categories:
{H, E, C}. Each column vector v⃗j in M is an L1-normalized (i.e,

∑K
j=1 Mi,j = 1)K-state probability vector in a unit (K − 1)-simplex. The encoding

length of M at any time t3D7→2D can be derived using Equation 5 by assuming a uniform prior h(v⃗j) =
(K−1)!√

K
. Hence,

I(M) =
K∑

j=1

K − 1

2
log(cK−1)− log[h(v⃗j)] +

1

2
log

(
XK−1

j∏
∀p∈v⃗j

p

)
(7)

where Xj is the total count of secondary structure transitions represented by v⃗j in the benchmark dataset D3D7→2D, and p is the conditional probability
of a secondary structural state indexed by j changing to another secondary structure state in v⃗j .

S2.2 Computation of I(ααα), I(Θ⃗i|ααα(t3D 7→2D
i )) and I(A3D7→2D

i |Θ⃗i)

Our framework involves the estimation of two Dirichlet priors: Dirmatch(α⃗match) and Dirinsert(α⃗insert) ≡ Dirdelete(α⃗delete) for match, insert
and delete states respectively. Dirmatch(α⃗match) describes a data sample

Θ⃗match = {Pr(match|match), (1− Pr(match|match))}

representing a point in 1-simplex, and Dirinsert(α⃗insert) describes a data sample

Θ⃗insert = {Pr(insert|insert),Pr(match|insert), (1− Pr(insert|insert)− Pr(match|insert))}

having d = 2 degrees of freedom. The remaining 6 transition probabilities {Pr(insert|match),Pr(delete|match), Pr(delete|insert),
Pr(match|delete),Pr(insert|delete),Pr(delete|delete)} of the alignment 3-state machine can be derived from the symmetry between insert,
delete states and the constraint that all transition probabilities out of any state add up to 1.
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The goal is to infer time-dependant optimal estimates of ααα = {α⃗match, α⃗insert ≡ α⃗delete} that minimizes the total message length. First, we
grouped each alignment in the benchmark dataset D3D 7→2D into discrete time bins in the range t3D7→2D ∈ [1, 250]. The subset of the alignments grouped
into t3D 7→2D time bin is denoted as A(t3D7→2D) in the subsequent equations. Since the 1-simplex Dirichlet (Dirmatch(α⃗match)) and the 2-simplex Dirichlet
(Dirinsert(α⃗insert)) models are independent of each other, this minimization can be carried out separately. Below presents the general total message
length formulation which communicates α⃗x(t3D7→2D), Θ⃗(x) and Ax(t3D7→2D) jointly for any state x ∈ {match, insert} using any evolutionary time bin
t3D 7→2D.

I(α⃗x(t
3D 7→2D), Θ⃗(x),Ax(t

3D 7→2D)) = I(α⃗x(t
3D7→2D)) + I(Θ⃗(x)|α⃗x(t

3D7→2D)) + I(Ax(t
3D 7→2D)|Θ⃗(x)) (8)

The right-hand side terms of Equation 8 can be further expanded using the methods of estimation detailed in section S1.1.1 as follows.

I(α⃗x(t
3D7→2D)) =

d

2
log[cd]− log[h(α⃗x(t

3D7→2D))] +
1

2
log[det[F (α⃗x(t

3D 7→2D))]] (9)

Here h(α⃗x(t3D7→2D)) is the prior on dirichlet parameters α⃗x(t3D 7→2D). See [Sumanaweera et al., 2019] for details on the prior used in the inference
process. cd is the lattice constant [Conway and Sloane, 1984] associated with d degrees of freedom, where cd = 5

36
√
3

for α⃗match with d = 2 degrees

of freedom and cd = 19

192 3√2
for α⃗insert with d = 3 degrees of freedom. det[F (α⃗x(t3D 7→2D))] given by Equation 3 is the determinant of the expected

Fisher of α⃗x(t3D7→2D).
Note: The total message length of encoding the time-dependant Dirichlet parameterααα can be computed using Equation 9 as follows.

I(ααα) =
∑

∀t3D7→2D∈[1,250]

I(α⃗match(t
3D7→2D)) + I(α⃗insert(t

3D7→2D))

The second term I(Θ⃗(x)|α⃗x(t3D 7→2D)) in Equation 8 can be expanded as:

I(Θ⃗(x)|α⃗x(t
3D 7→2D)) =


|A(t3D7→2D)|∑

i=1

1

2
log

(
1 +

det[F (Θ⃗i(x))](cd−1)
d−1

f(Θ⃗i(x)|α⃗x)2

)+
d

2
(10)

where the determinant of the expected Fisher information is given by Equation 6. Note for x = match, the term count(xj) in Equation 6 refers to any
one of match → match, match → insert, and match → delete transitions while the denominator refers to the product of all their probabilities:
{Pr(match|match), (1 − Pr(match|match))}. Similarly, for x = insert, the term count(xj) refers to any one of insert → match, insert →
insert, insert → delete, delete → match, delete → insert, delete → delete transitions and the denominator refers to the product of all
their probabilities: {Pr(insert|insert),Pr(match|insert), (1− Pr(insert|insert)− Pr(match|insert))}.

Each θj ∈ Θ⃗i(x) can be computed using MML87 estimation [Wallace and Wallace, 2005] as folows.

θj =
count(xj) + αx,j − 1

2∑d
l=1 count(xl) + κx − d

2

The last term I(Ax(t3D7→2D)|Θ⃗(x)) deals with transmitting the 3-state stringAi ∈ Ax(t3D 7→2D) using the parameter Θ⃗(x). Accordingly,

I(Ax(t
3D7→2D)|Θ⃗(x)) =

d∑
i=1

(xi ×− log(θi))

where d is the number of state parameters; θi ∈ {Θ⃗i(x), 1−
∑d−1

i=1 θi} and xi is the number of state transitions observed in the alignmentAi. Note:
Amatch(t3D7→2D) contains all instances of match → match, match → insert, and match → delete transitions in the set of alignments A(t3D7→2D)

for the case of x = match and Ainsert(t3D 7→2D) contains all instances of insert → match, insert → insert, insert → delete, delete →
match, delete → insert, and delete → delete transitions for the case of x = insert. The term I(A3D 7→2D

i |Θ⃗i) in Equation 3 of the main text
refers to the statement of the 3-state string only for a single alignment A3D7→2D

i using Θ⃗i parameter.

S2.3 Computation of I(t3D7→2D
i )

This computes the statement length of the optimal evolutionary time parameter t3D7→2D
i ∈ {t3D7→2D

1 , t3D7→2D
2 , . . . , t3D 7→2D

|D| }, inferred for each pair
〈
S2D
i , T

2D
i

〉
in D3D7→2D. We search over the integral values of t3D7→2D

i ∈ [1, 250], where in each iteration the objective in Equation 6 in main text is optimized to find
the best t3D7→2D

i given an alignmentA3D7→2D
i . The statement of I(t3D7→2D

i ) is considered to be uniform. Hence I(t3D7→2D
i ) = log(tmax) where tmax = 250.

S2.4 Computation of I(
〈
S2D
i , T 2D

i

〉
|A3D7→2D

i ,M(t3D7→2D
i ))

Consider a pair of proteins ⟨Si, Ti⟩ and their secondary structure information
〈
S2D
i , T

2D
i

〉
, where S2D

i = {s1, s2, . . . s|S2D
i |} and T 2D

i =

{r1, r2, . . . r|T 2D
i |}. Then, I(

〈
S2D
i , T

2D
i

〉
|A3D7→2D

i ,M(t3D 7→2D
i )) involves stating each secondary structure state in

〈
S2D
i , T

2D
i

〉
using the inferred models

as follows.

I(
〈
S2D
i , T

2D
i

〉
|A3D7→2D

i ,M(t3D7→2D
i )) =

∑
∀⟨sk,rl⟩⟩∈A3D7→2D

match

I(⟨sk, rl⟩ ,M(t3D7→2D
i )) +

∑
∀sk∈A3D7→2D

insert

I(π(sk)) +
∑

∀rl∈A3D7→2D
delete

I(π(rl))

The first term refers to the statement of the secondary structure pairs in the matched regions of the alignmentA3D7→2D
i using the conditional probability

of secondary structure substitution in M(t3D 7→2D
i ). The second and third term refers to the statement of secondary structures in inserted and deleted regions

respectively using the stationary distribution π. Note the diagonal of the matrix M at t=1 gives the stationary probabilities.
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S3 Search for the best Markov matrix M∗ and associated time-dependent Dirichlet parameters ααα

S3.1 Search for M∗ with fixed {ααα, Θ⃗}
Given the objective function in Equation 2-4 in the main text, and a dataset D3D 7→2D, we first search for the best matrix M∗ using a simulated annealing
approach while holding the ααα fixed and consequently Θ⃗ fixed. Initially, the search starts with a matrix where the probabilities on the diagonal cells are
set to 0.90 and 1 − 0.9 is distributed uniformly across the remaining cells in each column on SSTSUM. The same set of Dirichlet parameters ααα and
corresponding Θ⃗ parameters of the MMLSUM matrix were used as a starting point in the inference process.

The cooling schedule of the simulated annealing process starts with a temperature of T = 10, 000 and decreases by a factor of 0.88. At each iteration,
the current matrix M is perturbed randomly by selecting one of its column vectors. This random selection is made based on the stationary distribution π.
The perturbation step samples a new vector from a Dirichlet distribution where µ⃗ is the selected column and κ is a specified high-concentration parameter.
Initially, the concentration parameter is set to 10,000 and increased by a factor of 0.88 at each temperature step. A random sampling of a k-dimensional
probability vector θ⃗ from a k-dimensional Dir(α⃗) involves two steps. First, for each component αi ∈ α⃗, generate a Gamma distributed random sample
yi from the Gamma distribution Γ(αi, 1). Then, L1-normalise the sampled vector. During each perturbation step, the matrix is properly normalized, and
the expected change of the matrix is always ensured to be 1%. Once the perturbed matrix M̃ is identified, the next state x(T + 1) is determined using
the Metropolis criterion as follows.

if I(H,D) : M̃ ≤ I(H,D) : M, then x(T + 1) = M̃

if I(H,D) : M̃ > I(H,D) : M, then

x(T + 1) = M̃,with probability 2
−(I(H,D):M̃−I(H,D):M)

T

x(T + 1) = M, otherwise

(11)

At each temperature step, the matrix is perturbed 5000 times until the temperature reaches 0.0001.

S3.2 Search for ααα with fixed {M, {t3D7→2D
1 , t3D7→2D

2 , . . . , t3D7→2D
|D| }

Given a dataset D3D7→2D, we can infer the evolutionary time for each alignment (see Section 2.4 in the main text). Then we group each alignment into their
discrete bins of structure time t3D 7→2D

i , which result in subsets of alignments for each time t3D7→2D
i ∈ [1, tmax = 250]. We hold the stochastic matrix M

fixed and consequently {t3D 7→2D
1 , t3D7→2D

2 , . . . , t3D7→2D
|D| } fixed and infer 1-simplex and 2-simplex Dirichlet models for each discrete time bin by minimizing

the objective function in Equation 2-4 in the main text. We use a simulated annealing approach with the same parameters used for the inference of M∗

(see Section S3.1), except for the concentration parameter κ. For match state, κ is initialized to 10,000 and for insert state, κ is initialized to 1,000. At
each temperature step we randomly perturbed either µ or the concentration parameter κ of the Dirichlets (see Fig. 1 for the pseudocode). The resultant α⃗
is accepted/rejected based on the same metropolis criterion in Equation 11.

At each temperature step, α⃗ is perturbed 5000 times until the temperature reaches 0.001. The same process is continued to compute the best ααα,
∀t3D 7→2D

i ∈ [1, 250]. Θ⃗ is estimated from these values of α⃗(t3D7→2D
i ) as described in Section S2.2.

Function Perturb_Mean(µ⃗, κ):
y⃗ ← 0⃗;
sum← 0;
α⃗← κ · µ⃗;
for i← 1 to |α⃗| do
yi ← Γ_random(α⃗i, 1);
sum← sum+ yi;

end
for i← 1 to |α⃗| do
yi ← yi

sum
;

end
return y⃗

Function Perturb_Kappa(µ⃗, κ):
δ ← random_uniform(0.1, 1);
v ← random_uniform(0, 1);
y⃗ ← 0⃗;
if v ≤ 0.5 then
κ← κ+ δ;

else
κ← κ− δ;

end
for i← 1 to |α⃗| do
yi ← κ× µi;
sum← sum+ yi;

end
for i← 1 to |α⃗| do
yi ← yi

sum
;

end
return y⃗

Figure 1. Pseudocode for perturbing the parameters of a Dirichlet distribution
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S3.3 Statistics on M∗

A stochastic Markov matrix Mt3D7→2D
can be decomposed as Mt3D7→2D

= SΛt3D 7→2D
S−1 based on the eigen decomposition theorem. Here S is the

eigenvector and Λ is the diagonal eigenvalue matrix of M1. The set of all eigenvalues {λ1, λ2, . . . , λK} (in their descending order) is real and positive.
The largest eigenvalue λ1 which is known as the Perron-Frobenius eigenvalue is 1 as shown in Fig. 2. The eigenvector associated with λmax corresponds
to the stationary distribution. All eigenvalues reach 0 at equilibrium, except for λmax which remains a constant. This means all eigenvalues except for
λmax control the convergence of the matrix.

Figure 2. Variation of eigenvalues (λt3D7→2D
) of SSTSUM with t3D7→2D .

Kullback-Leibler (KL) divergence estimates the measure of relative Shannon entropy between two probability distributions. KL divergence between
each secondary structure column in the conditional probability matrix and its stationary distribution reflects the speed at which each column converges
into its equilibrium state. This can be computed as:

KL divergence =

K∑
i=1

K∑
j=1

Mi|j log

(
Mi|j

πi

)

where Mi|j is the conditional probability for the pair of secondary structure states indexed by i and j. πi is the probability of the stationary
distribution indexed by i. Figure 3 shows the KL divergence of SSTSUM which measures the convergence of each column vector to their respective
stationary distributions. Once a secondary structure state reaches equilibrium (stationary probability), it is no longer able to differentiate any secondary
structure substitution against random occurrences.

Figure 3. KL divergence measuring the convergence of each column vector in SSTSUM to their respective stationary distributions.
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S4 Choice of the data source

S4.1 SCOP2 benchmark dataset

We used the same benchmark dataset SCOP2 [Sumanaweera et al., 2022] which was used to infer MMLSUM (a time-parameterized model for amino
acid substitutions) for the inference of SSTSUM and associated models. This dataset contains 59,092 unique domain pairs sampled from fam-
ily and superfamily levels of the Structural Classification of Proteins (SCOP v2.07) [Murzin et al., 1995]. The list of alignments is available from
http://lcb.infotech.monash.edu/sstsum/smdata/scop2/SCOP2_PairwiseAlignmentList.txt and the tarball containing all
the structure alignments produced by MMLigner [Collier et al., 2017] can be downloaded from http://lcb.infotech.monash.edu/sstsum/

smdata/scop2/SCOP2_mmligner_benchmark.tar.gz

S4.2 Set of million domain pairs sampled from family and superfamily levels of SCOP

In this work, we randomly sampled a million domain pairs from the (SCOPe v2.08) database [Murzin et al., 1995] to compare the divergence time of
structures (t3D7→2D) and sequences (t1D). Table 1 shows the key statistics of this dataset. The full list of scop domain pairs including the SCOP domain
identifiers, SCOP paths, and the SCOP classification level can be downloaded from http://lcb.infotech.monash.edu/sstsum/smdata/

rawdata/million.txt.

Table 1. Distribution of the sampled one million domain pairs based on different classes of SCOP.

SCOP Class
SCOP Level

Family Superfamily Total
all-α 133,939 103,159 237,098
all-β 86,403 172,402 258,805
α/β 70,694 183,851 254,545
α+β 168,013 81,539 249,552

S4.3 Five sets of domain pairs sampled at varying levels of SCOP hierarchy

We did another analysis to compare the divergence time of structures classified in each hierarchical level of SCOP. We further sampled distinct sets of
domain pairs from each hierarchical level of SCOP such that each domain appears at most once in the dataset. This comprised 5 sets of domain pairs
sampled at the same family, same superfamily, same fold, same class, and decoy (different class) levels respectively. See Table 2 for more information on
the datasets. The list of domain pairs of these 5 datasets is available on the supplementary website: http://lcb.infotech.monash.edu/sstsum.

Table 2. Distribution of the five distinct sets of domain pairs sampled from varying levels of SCOP classification.

SCOP Level No. of domain pairs
Family 55,201

Superfamily 31,600
Fold 40,582
Class 40,551
Decoy 40,466

S4.4 Raw data used in secondary structure prediction

We used a non-redundant dataset containing 45,887 protein sequences and their secondary structure assignments that were deposited before the 1st
of January 2017 to search for hits in the secondary structure prediction method. The list of PDB IDs is available from http://lcb.infotech.

monash.edu/sstsum/smdata/rawdata/pdb-90.txt.

S4.5 Data used in plots

All the raw data used to generate the plots in the main text is available on the supplementary website: http://lcb.infotech.monash.edu/
sstsum. This includes the list of PDB IDs of the targets released in CASP 14 and 15 which was used to evaluate SSTPred with 3 other secondary
structure predictors.
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