
Optimal Sum-of-Pairs Multiple Sequence Alignment using Incremental

Carrillo-and-Lipman Bounds.

Arun S. Konagurthu1,2 Peter J. Stuckey1,3

1 Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria, 3010, Australia.

{arun/pjs}@cs.mu.oz.au

2 Victorian Bioinformatics Consortium

Department of Biochemistry and Molecular Biology

Monash University, Victoria, 3800, Australia.

3 NICTA Victoria Laboratory, Australia.

Address for correspondence: Peter J. Stuckey, Department of Computer Science and Software

Engineering, The University of Melbourne, Victoria, 3010, Australia.

Phone: +613-8344-1341

FAX: +613-9348-1184

Accepted for publication in Journal of Computational Biology

Abstract

Alignment of sequences is an important routine in various areas of science, notably molecular

biology. Multiple sequence alignment is a computationally hard optimization problem which

involves the consideration of different possible alignments in order to find an optimal one, given

a measure of goodness of alignments. Dynamic programming algorithms are generally well-suited

for the search of optimal alignments, but are constrained by unwieldy space requirements for large

numbers of sequences. Carrillo and Lipman devised a method that helps to reduce the search

space for an optimal alignment under a sum-of-pairs measure using bounds on the scores of its

pairwise projections. In this paper we generalize Carrillo and Lipman bounds and demonstrate

a novel approach for finding optimal sum-of-pairs multiple alignments that allows incremental

pruning of the optimal alignment search space. This approach can result in a drastic pruning

of the final search space polytope (where we search for the optimal alignment) when compared

to Carrillo and Lipman’s approach and hence allows many runs that are not feasible with the

original method.

2

1 Introduction

Simultaneous alignment of multiple sequences is a difficult problem of great importance in compu-

tational molecular biology. Multiple alignments are used in various application areas that include

molecular modelling, protein structure-function analysis, sequence fragment assembly, evolutionary

phylogenetic study, database search, and primer design amongst others (Needleman and Wunsch,

1970; Murata et al., 1985; Thompson et al., 1994). With these motivations, automated multiple

alignment tools have long been a topic of elaborate research.

Dynamic programming has been widely used to solve the optimization problem of aligning se-

quences (Needleman and Wunsch, 1970; Murata et al., 1985). However dynamic programming’s

asymptotic complexity increases exponentially with the dimension (O(n22nln) for the sequence align-

ment problem, where l is the mean length of n sequences to be compared under a sum-of-pairs

measure). The multiple sequence alignment problem using various criteria of optimality has been

shown to be NP-Hard (Wang and Jiang, 1994; Just, 2001). As a result many tools and methods use

approximate algorithms that trade-off optimality with the speed (Thompson et al., 1994; Notredame

et al., 2000; Hughey and Krogh, 1996).

There are few tools and methods that construct an optimal alignment using sum-of-pairs cost

criterion (Lipman et al., 1989; Gupta et al., 1995; Kececioglu, 1993; Stoye et al., 1997; Reinert et al.,

1997, 2000; Althaus et al., 2002). Most of these tools implement the method similar to the one

designed by Carrillo and Lipman that considerably restricts the size of exploration space in which

the optimal solution can be searched (Carrillo and Lipman, 1988). The central idea of Carrillo and

Lipman approach is that every multiple alignment imposes a pairwise alignment on any sequence pair.

While treating the alignment of n sequences as a path in n-dimensional lattice, this imposed alignment

on each pair can be viewed as a projected path in two-dimensional space. It is then possible to find

bounds on the cost of projection of the optimal path. In practice, however, it has been observed

that these bounds are over-estimated. Hence tools such as MSA (Lipman et al., 1989) implement a

heuristic variant of Carrillo and Lipman’s algorithm, using tighter bounds than the guaranteed ones,

that does not ensure a mathematical optimum (Notredame, 2002).

Major advances in the the search for optimal alignments and the reduction of the exploration

space include the following: Altschul and Lipman (1989) propose a different cost model (alignments

scored as the cost of an evolutionary tree) instead of the standard sum-of-pairs cost scheme. Gupta

3

et al. (1995) show an efficient implementation of lattice exploration using a variant of Dijkstra’s

single-source shortest paths. Gusfield (1993) gives a bounded-error approximation method for sum-

of-pairs sequence alignment which can be used as an alternative lower bound on the cost of an optimal

alignment. Stoye et al. (1997); Stoye (1998) show a divide and conquer algorithm (DCA) which slices

the input sequences into subsets of segments small enough to enable a massive speed-up on the reg-

ular approaches using heuristic bounds. Lermen and Reinert (2000) implement the A∗ algorithm

(goal-directed unidirectional search) that speeds up the shortest path computation by transforming

the edge weights without losing the optimality of the shortest path. Reinert et al. (2000) combines the

divide and conquer technique (Stoye et al., 1997) with the efficient bounding strategies in Lermen and

Reinert (2000). Kececioglu (1993) introduces the maximum weight trace problem (which contains as

a special case the minimum sum-of-pairs alignment problem) and proposes a branch and bound algo-

rithm for it. Reinert et al. (1997) show a branch-and-cut algorithm for an integer linear programming

(ILP) formulation of the maximum weight trace problem. Althaus et al. (2002) propose a general

ILP formulation of multiple sequence alignment problem using arbitrary gap costs and describe a

branch-and-cut method to find optimal alignments.

A severe constraint in the implementation of Carrillo and Lipman’s approach is the space usage

which is the result of exaggerated nature of the bounds (Gupta et al., 1995). The core of this paper

is a novel method that successfully reduces the space usage when compared to Carrillo and Lipman’s

method. We formulate the sequence alignment problem as one which maximizes the score of an

alignment under a sum-of-pairs measure. In our approach, the improvement in space usage is derived

from the generalization of constraints on the score of projections of optimal multiple alignments of n

sequences into some k-space, k < n. We show in this paper a novel method for constructing optimal

multiple alignments using the incremental use of these generalized Carrillo and Lipman constraints.

The results show a drastic pruning of the search space for optimal alignments. This space reduction

that we have achieved allows the calculation of optimal alignments for data sets that were previously

infeasible with the original Carrillo and Lipman method.

The outline of this paper is as follows. Section 2 describes the basic notations used in this paper and

defines the problem of sequence comparison. Section 3 provides a brief review of Carrillo and Lipman’s

approach to constrain the search space of an optimal multiple alignment based on the scores of its

pairwise projections. Section 4 generalizes Carrillo and Lipman’s method for any k-space projections.

Section 5 establishes the mathematical basis of space improvements of our incremental method and

4

describes with an example the construction of optimal alignment using our approach. Section 6

explains various materials and methods used to undertake this work. Section 7 gives the experimental

results of various comparisons between our Incremental approach and Carrillo and Lipman’s method

on real data sets of protein sequences from HOMSTRAD and BALIBASE. We conclude this paper

with a short discussion.

2 Basic Definitions and The Problem of Sequence Comparison

Suppose that the alphabet ℵ is a finite set of t symbols (20 amino acid single letter codes in case of

protein sequences), ℵ = {α1, · · · , αt}.

A sequence of length k is a set of symbols of the form,

S = (αn1 , · · · , αnk
)

where for each j=1, · · · , k, nj is a natural number such that αnj
is a symbol from ℵ.

An alignment of set of sequences S1, · · · , Sn is another set of sequences, S′
1, · · · , S′

n, such that each

sequence S′
i is obtained from Si by inserting gap symbols (‘-’) in positions where some of the other

sequences have a non-gap symbols that satisfies the following conditions:

1. If the lengths of S1, · · · , Sn is k1, · · · , kn respectively, each sequence in the set S′
1, · · · , S′

n has

the same length, l, such that max(k1, · · · , kn)≤ l ≤ k1 + · · ·+ kn.

2. Ignoring the gap symbols, every S′
i is precisely the string Si.

An illustration of a possible alignment of three sequences S1 = CYRWT, S2 = ECHYR, and S3 = YRIW

is shown in Figure 1, where the symbols of these sequences follow the single letter code convention for

representing amino acid residues.

Given a scoring function f : ℵ × ℵ → < and gap penalty function G, the problem of sequence

comparison is to find an optimal way to align a set of sequences such that the total measure of score

of the alignment (sum of scoring function over the aligned pairs of symbols from ℵ, minus the sum of

the penalties for gaps given by gap penalty function) is maximized. In this work we use the linear gap

penalty function G = λg in a sum-of-pairs measure where λ is the gap length and g is the per-symbol

gap cost.

Any given set of n sequences S1, · · · , Sn having lengths k1, · · · , kn respectively can be associated

with a lattice, L(S1, · · · , Sn) in n-dimensional space (from here on, referred as n-space). This lattice

5

consists of k1 × · · · × kn n-space cells. Each cell corresponds to a group of n symbols, where each

symbol belongs to a different sequence. The cell corresponding to the first symbol of each of the

sequences is called the source and the cell corresponding to the last symbol of the sequences is called

sink. Both source and sink together are referred in this paper as end corners.

The alignment of set of sequences S1, · · · , Sn can be associated with a path γ(S1, · · · , Sn) from

source to sink in the lattice, L(S1, · · · , Sn). (see Figure 1) Figure 1

For the alignment shown in Figure 1 the path encoded using the cell indices with source 〈0, 0, 0〉

and sink 〈5, 5, 4〉 is defined by the trace left by the traversal through the following edges: 〈0, 0, 0〉 →

〈0, 1, 0〉 → 〈1, 2, 0〉 → 〈1, 3, 0〉 → 〈2, 4, 1〉 → 〈3, 5, 2〉 → 〈3, 5, 3〉 → 〈4, 5, 4〉 → 〈5, 5, 4〉.

Let the measure of score of any given path γ be denoted by ζ(γ). There exists at least one optimal

path, γo(S1, · · · , Sn), such that the measure ζ attains the maximum value for γo.

Dynamic programming is popularly used to find the optimal paths (Needleman and Wunsch, 1970;

Murata et al., 1985). Each cell in the dynamic programming lattice L(S1, · · · , Sn) has an associated

score which indicates the best path from that cell to the source. The score to each cell is derived from

its immediately preceding cells in its neighborhood. The central idea of this method is to recursively

find all optimal paths to the source for all these cells in L. The lattice can be filled from source to

sink in row-major, column-major or anti-diagonal way. Each cell also holds a pointer to mark the

preceding cell that contributed to its optimal path to enable a trace back of the optimal path from sink

to source through these pointers. The computations in this standard dynamic programming model

for calculation of γo takes O(
n∏

i=1

ki) steps each of which involves O(2n) operations.

The projection of a n-space path γ in the lattice L(S1, · · · , Sn) into any sub-space L′i1,··· ,ik
=

L(Si1 , · · · , Sik
), for each i1 < · · · < ik | {i1, · · · , ik} ⊆ {1, · · · , n} is defined as the path associated

with the imposed alignment of γ in the sub-space, L′i1,··· ,ik
. The projected path is denoted by←−γ i1,··· ,ik

.

Figure 2 shows the projections (and the imposed alignments) of the path shown in Figure 1 into sub-

spaces associated with each of its sequence pair. Figure 2

Sum-of-pairs Alignment (SP-alignment) is a multiple alignment in which the measure of score of

a path is equal to the sum of scores of all its projected pairwise paths:

ζ(γ) =
∑

∀1≤i<j≤n

ζ(←−γ ij).

The score of any pairwise path γij corresponding to the some alignment of the sequences Si and Sj is

calculated as follows:

6

ζ(γij) =
|γij |∑
k=0


f(S′

i(k), S′
j(k)) S′

i(k) and S′
j(k) ∈ ℵ

g S′
i(k) or S′

j(k) ∈ {−}

0 S′
i(k) and S′

j(k) ∈ {−}

where |γij | is the length of the path γij , S′
i, S

′
j are aligned sequences corresponding to that path with

S′
i(k) and S′

j(k) representing the kth column of the alignment.

3 Review of Carrillo and Lipman’s Algorithm.

In the context of SP-alignments, Carrillo and Lipman designed a method for determining the optimal

path γo(S1, · · · , Sn) for n > 2 with significantly fewer computations (Carrillo and Lipman, 1988).

Carrillo and Lipman’s method is based on a basic observation that the score of projection of an

optimal multiple alignment into any of its sequence pairs must be at most as great as the score of

pairwise alignment between those two sequences (Altschul and Lipman, 1989).

Let γh(S1, · · · , Sn) be a known heuristic path in n-space and πo
ij be the optimal alignment of any

pair of sequences Si and Sj , ∀ 1 ≤ i < j ≤ n, Carrillo and Lipman showed that,

∑
∀1≤i<j≤n

ζ(←−γ h
ij)−

∑
∀1≤i<j≤n,

(i,j) 6=(k,l)

ζ(πo
ij)

︸ ︷︷ ︸
Carrillo−Lipman bound.

≤ ζ(←−γ o
kl)

Rearranging terms we get,

L− U + ζ(πo
kl) ≤ ζ(←−γ o

kl) (1)

where,

L =
∑

1≤i<j≤n

ζ(←−γ h
ij) is the sum of the scores of all projected heuristic alignments, and

U =
∑

1≤i<j≤n

ζ(πo
ij) is the sum of all pairwise optimal alignments.

Observation 3.1. Suppose, ∀ i < j | i, j ∈ (1, · · · , n), Xij are paths in lattice L(S1, · · · , Sn) whose

scores of projection into any pair of sequences Si and Sj is at least L−U + ζ(πo
ij). Then, ∃ a n-space

polytope, Xcl ⊆ L where,

7

Xcl =
⋂

∀1≤i<j≤n

Xij

such that only the paths in Xcl are possible candidates to be an optimal path, γo.

Observation 3.2. Let, ∀ i < j | i, j ∈ (1, · · · , n), Yij be set of cells in the square L′ij = L(Si, Sj)

whose end corners (source and sink) are traversed by some path of score at least L− U + ζ(πo
ij). Let

−→
Y ij be set of points x ∈ L(S1, · · · , Sn) such that ←−x ij ∈ Yij, where ←−x ij is the projection into L′ij. The

set
−→
Y ij contains all paths in Xij and the set

Ycl =
⋂

∀1≤i<j≤n

−→
Y ij

contains all paths in Xcl.

To determine the region Yij ⊂ L′ij , we need to find the best path through each of the cells in L′ij .

To enable this computation, a dynamic programming algorithm is applied in both source-to-sink and

sink-to-source directions. Given both these computations, for any cell C, we now have the optimal

path from C-to-source (due to source-to-sink computations), and the optimal path from C-to-sink

(due to sink-to-source computations). Therefore, this enables us to compute the score of the optimal

path through each of the cells in L′ij . Yij is computed in O(
n∑

i<j

kikj) steps where k1, · · · , kn are

lengths of the sequences S1, · · · , Sn (Carrillo and Lipman, 1988). As an illustration of the notion of

bounded space Yij , we present an example. Consider the following three sequences: S1 = PCVCGGQ,

S2 = MPRVCVCGQ, and S3 = DVCVC. Figure 3 shows the matrices associated with each sequence

pair ({S1, S2}, {S1, S3}, and {S2, S3}). The value in each cell of the matrices represents the score of

the optimal path between the end corners passing through that cell. The shaded areas (Y12, Y13, and

Y12 respectively) guarantee to contain the respective projections of optimal path, γo(S1, S2, S3). Figure 3

Using the above reasoning Carrillo and Lipman proved that it suffices to consider only a subspace

Ycl (a n-space polytope) to restrict the search for the optimal path and hence it is unnecessary to

apply the dynamic programming method on the whole lattice L(S1, · · · , Sn). The computational

requirement of Carrillo and Lipman’s algorithm is a function of the size of the subspace Ycl in the

lattice L(S1, · · · , Sn) plus the number of computations necessary to generate it (Carrillo and Lipman,

1988). Note that the Carrillo-Lipman bound is tightest when γh = γo.

The Carrillo and Lipman’s algorithm for finding SP-alignments can be broadly summarized as

follows:

8

1. Find bounds on the score of projection of optimal alignment onto each of its sequence pairs.

2. Use these constraints to restrict the size of the dynamic programming lattice.

3. Find the optimal alignment in the restricted space

4 The generalization of Carrillo and Lipman constraints on

multiple alignments.

Carrillo and Lipman’s approach can be generalized to find the constraints on optimal multiple align-

ment using bounds on the scores of its projections into any k-space (2 ≤ k < n).

Theorem 4.1. The search of a n-space optimal path can be constrained using the scores of its k-space

projections for any 2 ≤ k < n.

Proof. By the definition of optimality, ζ(γh)− ζ(γo) ≤ 0.

Let←−γ i1,··· ,ik
be the projection of any path, γ(S1, · · · , Sn) into a k-space corresponding to the sequences

Si1 , · · · , Sik
. Then ∑

∀1≤i1<···<ik≤n

ζ(←−γ i1,··· ,ik
) = n−2Ck−2ζ(γ)

Hence ∑
∀1≤i1<···<ik≤n

(
ζ(←−γ h

i1,··· ,ik
)− ζ(←−γ o

i1,··· ,ik
)
)
≤ 0

Let πo
i1,··· ,ik

denote an optimal path in a k-space lattice determined by the sequences Si1 , · · · , Sik
,

L(Si1 , · · · , Sik
). Since ζ(πo

i1,··· ,ik
) ≥ ζ(←−γ o

i1,··· ,ik
), we get∑

cond1

ζ(←−γ h
i1,··· ,ik

)−
∑

cond2

ζ(πo
i1,··· ,ik

) ≤ ζ(←−γ o
j1,··· ,jk

).

where, cond1 ≡ ∀1 ≤ i1 < · · · < ik ≤ n, and cond2 ≡ ∀1 ≤ i1 < · · · < ik ≤ n, (i1, · · · , ik) 6=

(j1, · · · , jk). Rearranging terms in the above inequality we get,

Lk − Uk + ζ(πo
j1,··· ,jk

) ≤ ζ(←−γ o
j1,··· ,jk

). (2)

where, Lk =
∑

∀1≤i1<···<ik≤n

ζ(←−γ h
i1,··· ,ik

) and Uk =
∑

∀1≤i1<···<ik≤n

ζ(πo
i1,··· ,ik

).

9

Observation 4.1. Suppose, ∀ i1 < · · · < ik | {i1, · · · , ik} ⊆ {1, · · · , n}, Xi1,··· ,ik
are paths in lattice

L(S1, · · · , Sn) whose scores of projection into k sequences Si1 , · · · , Sik
is at least Lk−Uk +ζ(πo

i1,··· ,ik
).

Then ∃ a n-space polytope Xgcl ⊆ L, where,

Xgcl =
⋂

∀1≤i1<···<ik≤n

Xi1,··· ,ik

such that only the paths in Xgcl are possible candidates to be an optimal path, γo.

Observation 4.2. For all i1 < · · · < ik | {i1, · · · , ik} ⊆ {1, · · · , n}, let Yi1,··· ,ik
be set of cells in the

k-space lattice L′i1,··· ,ik
= L(Si1 , · · · , Sik

) whose end corners are traversed by some path of score at least

Lk − Uk + ζ(πo
i1,··· ,ik

). Let
−→
Y i1,··· ,ik

be set of points x ∈ L(S1, · · · , Sn) such that ←−x i1,··· ,ik
∈ Yi1,··· ,ik

,

where ←−x i1,··· ,ik
is the projection into L′i1,··· ,ik

. The set
−→
Y i1,··· ,ik

contains all paths in Xi1,··· ,ik
and

the set

Ygcl =
⋂

∀1≤i1<···<ik≤n

−→
Y i1,··· ,ik

(3)

contains all paths in Xgcl.

For any k > 2, the direct computation of πo
i1,··· ,ik

is highly expensive. In the next section we

demonstrate a method in which this optimal path can be calculated in the restricted space given by

earlier projections.

5 The Incremental Approach

The key idea of our approach is to incrementally compute optimal sequences πo
i1,...,ik

for each dimension

k from 2 to n and apply the generalized Carrillo and Lipman pruning outlined in Observation 4.2

at each dimension. By computing only within the intersections of the previously pruned spaces this

approach reduces the time and space requirements significantly.

The algorithm works as follows. We first compute πo
i1i2

and Yi1i2 for 1 ≤ i1 < i2 ≤ n as usual. Let

Γi1i2 = Yi1i2 for 1 ≤ i1 < i2 ≤ n.

Now we iterate k from 2 to n. In the kth iteration. For each 1 ≤ j1 < · · · < jk+1 ≤ n we calculate

Φj1,...,jk+1 =
⋂

cond3

−→
Γ

j1,...,jk+1

i1,··· ,ik

where cond3 ≡ ∀1 ≤ i1 < · · · < ik ≤ n, {i1, . . . , ik} ⊆ {j1, . . . , jk+1} and
−→
Γ

j1,...,jk+1

i1,··· ,ik
is the reverse

projection of Γi1,··· ,ik
onto the space L(Sj1 , . . . Sjk+1). Φj1,...,jk+1 is the intersection of all of the pruned

10

spaces for k dimensions applicable to the given k + 1 dimensions. We then calculate πo
j1,...,jk+1

in this

restricted space Φj1,...,jk+1 .

Once we have calculated πo
j1,...,jk+1

for all 1 ≤ j1 < · · · < jk+1 ≤ n we can calculate Uk+1 and then

calculate Yj1,...,jk+1 (the application of generalized Carrillo and Lipman pruning from Observation 4.2).

For each 1 ≤ j1 < · · · < jk+1 ≤ n we calculate

Γj1,...,jk+1 = Φj1,...,jk+1 ∩ Yj1,...,jk+1

The process continues until we calculate πo
1,...,n. Figure 4

In the conventional Carrillo and Lipman’s algorithm the multiple alignment is constrained based

on the score of pairwise projections. In our approach, however, the pruning is done gradually on

each increasing dimension from pairwise to triplets to quads to quints, and so on. For example, let

S1, S2, S3, S4, S5 be any five sequences whose optimal alignment is to be determined. We begin our

approach by finding the bounds on projections of the optimal alignment into all of its 5C2 pairs of se-

quences, {(S1, S2), (S1, S3), (S1, S4), (S1, S5), (S2, S3), (S2, S4), (S2, S5), (S3, S4), (S3, S5), (S4, S5)},

using the constraint L− U + ζ(πo
i1i2) ≤ ζ(←−γ o

i1i2).

The original Carrillo-Lipman method proceeds from here to find a polytope of paths in 5-space

constrained by the above pairwise bounds. Instead, the incremental approach explores the regions in

the next dimension (3-space) such that all paths in it satisfy the constraints on their corresponding

pairwise projections. We find 5C3 such regions associated with each of the triplets: {(S1, S2, S3),

(S1, S2, S4), (S1, S2, S5), (S1, S3, S4), (S1, S3, S5), (S1, S4, S5), (S2, S3, S4), (S2, S3, S5), (S2, S4, S5),

(S3, S4, S5)}

In the context of a particular three dimensional region L′123 = L(S1, S2, S3) we obtain the 3-space

polytope Φ123 ⊂ L′123 as the intersection of Y12, Y13 and Y23 (appropriately reverse projected). This

polytope, Φ123 will contain the projection of the optimal path γo(S1, S2, S3, S4, S5) into (S1, S2, S3),

←−γ o
123. Φ123 also contains paths that are possible candidates for the optimal path in (S1, S2, S3), πo

123

(see Lemma 5.1 below).

The optimal paths of all possible triplets are explored using this method. For each i1 < i2 <

i3 | i1, i2, i3 ∈ {1, 2, 3, 4, 5}, Φi1i2i3 is then further pruned (see Theorem 5.1 below) by eliminating

any path in this space which is less than L3 − U3 + ζ(πo
i1i2i3), where L3 and U3 are defined as in

Theorem 4.1 above. This gives Γi1i2i3 . This results in the bounds on projection of optimal alignment

γo(S1, S2, S3, S4, S5) on all its triplets.

11

Using these triplet bounds we obtain the 4-space regions associated with the quadruplets:

{(S1, S2, S3, S4), (S1, S2, S3, S5), (S1, S2, S4, S5), (S1, S3, S4, S5), (S2, S3, S4S5)}. For each i1 < i2 <

i3 < i4 | i1, i2, i3, i4 ∈ {1, 2, 3, 4, 5}, we find the 4-space polytopes Φi1i2i3i4 in the same manner as in

the case of triplets. We then explore this space and calculate the optimal quadruple paths, πo
i1i2i3i4

.

Using the scores of optimal quadruple paths we prune every Φi1i2i3i4 by eliminating those paths that

are less than L4 − U4 + ζ(πo
i1i2i3i4) to give Γi1i2i3i4

These quadruplet spaces Γi1i2i3i4 are then finally used to find the 5-space polytope, Φ12345 ⊂

L(S1, S2, S3, S4, S5) which contains all paths that are possible candidates for the optimal path, γo(S1, S2, S3, S4, S5).

The exploration will lead to the calculation of optimal multiple alignment of S1, S2, S3, S4, S5.

The correctness of the approach follows from the results below. We show that the pruning that

is done at lower dimensions never removes an optimal sequence for any higher dimensions. We then

show by induction that an optimal path (for any set of dimensions) is never pruned.

Lemma 5.1. For each 2 ≤ k ≤ l and 1 ≤ h1 < · · · < hl ≤ n and 1 ≤ i1 < · · · < ik ≤ n where

{i1, . . . , ik} ⊆ {h1, . . . , hl} we have that the optimal path πo
h1,...,hl

is in the reverse projection of Yi1,...,ik

to the space L(Sh1 , . . . , Shl
).

Proof. We make use of the generalized Carrillo and Lipman bounds pruning, assuming that h1, . . . , hl

are the only dimensions in the problem, and show that the pruning with more dimensions is weaker.

Define Lh1,...,hl

k and Uh1,...,hl

k as follows.

Lh1,...,hl

k =
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}

ζ(←−γ h
i1,...,ik

)

Uh1,...,hl

k =
∑

∀1≤i1<···<ik≤n,{i1,...,ik}⊆{h1,...,hl}

ζ(πo
i1,...,ik

)

Now Yi1,...,ik
is the space that contains only paths at least of score Lk − Uk + ζ(πo

i1,...,ik
).

If the only dimensions in the original problem were h1, . . . , hl then we could apply generalized

Carrillo and Lipman pruning (Observation 4.2) to create a space Y ′
i1,...,ik

with paths at least of score

Lh1,...,hl

k − Uh1,...,hl

k + ζ(πo
i1,...,ik

) and be guaranteed that πo
h1,...,hl

appeared in the reverse projection

of this space. We show that Yi1,...,ik
⊇ Y ′

i1,...,ik
since Lk − Uk ≤ Lh1,...,hl

k − Uh1,...,hl

k .

By definition

Lk = Lh1,...,hl

k +
∑

∀1≤i1<···<ik≤n,{i1,...,ik}6⊆{h1,...,hl}

ζ(←−γ h
i1,...,ik

)

12

and

Uk = Uh1,...,hl

k +
∑

∀1≤i1<···<ik≤n,{i1,...,ik}6⊆{h1,...,hl}

ζ(πo
i1,...,ik

)

Hence we need to prove that

∑
∀1≤i1<···<ik≤n,{i1,...,ik}6⊆{h1,...,hl}

ζ(←−γ h
i1,...,ik

)− ζ(πo
i1,...,ik

) < 0

But by the definition of optimality of πo
i1,...,ik

ζ(πo
i1,...,ik

) > ζ(←−γ h
i1,...,ik

) and hence the result holds.

Theorem 5.1. For each 2 ≤ k ≤ l and 1 ≤ h1 < · · · < hl ≤ n and 1 ≤ i1 < · · · < ik ≤ n where

{i1, . . . , ik} ⊆ {h1, . . . , hl} we have that the optimal path πo
h1,...,hl

is in the reverse projection of Γi1,...,ik

to the space L(Sh1 , . . . , Shl
).

Proof. The proof is by induction on k. The base case when k = 2 follows directly from Lemma 5.1

since Γi1i2 = Yi1i2 .

Let us consider the case when k = k′ + 1 > 2. By induction, for each 1 ≤ j1 < · · · < j′k ≤

n, {j1, . . . jk′} ⊆ {i1, . . . , ik} we have that πo
h1,...,hl

appears in each space
−→
Γ

h1,...,hl

j1,··· ,jk′
, and hence clearly

it also appears in
−→
Φ

h1,...,hl

i1,··· ,ik
by definition.

Now by Lemma 5.1 πo
h1,...,hl

also appears in
−→
Y

h1,...,hl

i1,··· ,ik
and hence it appears in

−→
Γ

h1,...,hl

i1,··· ,ik
by definition.

By simply applying the above theorem when l = n we have that.

Corollary 5.1. The incremental Carrillo and Lipman approach correctly calculates πo
1,...,n ≡ γo

1,...,n.

6 Materials and Methods

All the programs developed for this work were implemented using standard C. Separate programs

were developed to implement both Carrillo and Lipman’s approach and the Incremental approach.

To construct fast heuristic alignments a program was developed that implements the progressive

pairwise approach for constructing multiple sequence alignments using Unweighted Pair Group using

Arithmetic Mean(UPGMA) clustering (Sneath and Sokal, 1973) to build a guide tree along which

the final heuristic alignment is forced. While developing the programs we ensured the use of similar

data structures and programming logic so that comparisons between Carrillo and Lipman’s method

13

and the Incremental method have merit. The source code of our implemention can be obtained from

http://www.cs.mu.oz.au/~arun/msa-incr.html.

Real sequence data sets were used to compare the performance of both the methods. The short

amino acid sequences were extracted from HOMSTRAD (Mizuguchi et al., 1998), the database of

protein structure alignments for homologous families. Also, the entire reference 1 set from BAL-

IBASE (Thompson et al., 1999) is used in this work.

The Blosum62 (Henikoff and Henikoff, 1992) substitution scoring matrix and a gap penalty of −5

are used as alignment parameters for results in Tables 1-4. To show the variability of space and time

usages of both the approaches as a function of alignment parameters, an in-house substitution matrix

(created from 400 families of HOMSTRAD structural alignments) with a gap penalty of -9 was used

to align the same data sets used in Tables 1-3 of this paper. Details of the substitution matrix and

its synthesis can be found at www.cs.mu.oz.au/~arun/INCR_APPROACH/submat.pdf

The programs were executed on an INTEL Pentium 4 PC with a 1.3GHz processor and 256 Mbytes

of primary memory running on Redhat’s Fedora Core 1 Linux operating system.

7 Experimental Results

In this section we undertake various comparisons of the performance of Carrillo and Lipman’s Ap-

proach with our Incremental Approach. The comparisons between these approaches were made using

the follows metrics:

• Peak Space Usage (PSU): In both these approaches the maximum space requirement is a linear

function of the number of cells that are needed to be held in the programs data structures

to enable an exploration. Also, the data structures used in both these programs are linearly

related to the dimension of an exploration. Therefore, for the Carrillo and Lipman’s approach

Peak Space Usage is calculated as:

Peak Space Usage= |Ycl| × n

In the Incremental approach the explorations are done repeatedly within every level of the

increment. Hence the Peak Space Usage is measured as:

Peak Space Usage= maxJ⊆{1,...,n}|ΦJ | × |J |

14

that is the maximum size of Φ for some index set J multiplied by the dimension |J | of that

index set.

• Total Operations (TOps): The execution time is dominated by the calculation of optimal paths

C-to-sink and C-to-source to enable pruning. We use this to define the “total operations”

measure of computational complexity.

For Carrillo and Lipman’s approach the estimate of total operations is measured as:

Total Operations= |Ycl| × (2n − 1)

For the Incremental approach this is measured as:

Total Operations=
∑

J⊆{1,...,n} |ΦJ | × (2|J| − 1)

Note that neither measures the operations for the original Carrillo and Lipman pruning.

• Time: This metric measures the wall clock time of executions of both the methods in seconds.

• Accuracy(Acc): This measure gives the relatedness of the alignments with respect to the

database alignment. The overall accuracy of a multiple alignment is calculated as the mean

of accuracy of all possible non-redundant sequence pairs in a multiple alignment. The pairwise

accuracy is the percentage of correctly aligned residues with respect to the a database align-

ment. Note that the two methods always calculate the same accuracy. They are actually not

guaranteed to give the same alignment since there may be more than one optimal, but this never

occurs in our experiments.

Table 1 shows the comparisons of Peak Space Usage, Total Operations, Time, and Accuracy metrics

between Carrillo and Lipman’s approach and Incremental approach for data sets from HOMSTRAD.

The data sets follow the HOMSTRAD nomenclature. We also show the number of sequences in each

data set in parentheses. Note that same alignment parameters (Blosum62 substitution matrix with

gap penalty of -5) and heuristic alignment were used for all experiments. Results in Table 1 clearly

15

show a approximately 4× reduction in the Peak Space Usage using the Incremental approach, and an

approximately 2× reduction in the total operations and total execution time.

Both the original Carrillo and Lipman method and our incremental approach are improved if a

better heuristic is used. In the next experiment we use the optimal answer as the heuristic input to the

algorithms. The results are shown in Table 2. In these experiments sometimes Carrillo and Lipman’s

approach ran out of memory in the construction of Ycl and hence we cannot get an accurate gauge

of Peak Space Usage and Total Operations, so all the entries are marked as —. From the results it

is clear that the incremental approach gains even more benefit from a better heuristic, with a order

of magnitude reduction in space requirements, and approximately 3× reduction in operations and

approximately 2× reduction in execution time. Here the improvement in execution time is less than

that for total operations as input/output becomes a significant proportion of the execution time. We

shall see in the next experiment how we can generate a very good heuristic answer rapidly for use by

our incremental approach.

In practice, to be able to achieve simultaneous alignment of many sequences Carrillo and Lipman’s

approach is used with bounds tighter than the guaranteed ones (Lipman et al., 1989; Gupta et al.,

1995). We can apply the same idea to the incremental approach, using bounds tighter than the

guaranteed ones at each step. In the following experiment we used both methods with a bound Lk−Uk

defined as −50− 10× (k − 2) rather than using the calculated values. This bound is generous in the

sense that the value calculated is optimal for all data sets where we know the optimal value (those

in Table 2). However it should be noted that the choice of such a definition for the heuristic bound

for very divergent sequences can result in the method missing the optimal alignment. Pre-calculated

heuristic bounds based on sequence divergence, composition, dimension of alignment could be used to

serve as a good definition. Table 3 shows the comparisons between the heuristic implementations of

both the approaches. In this experiment sometimes Carrillo and Lipman’s approach could construct

Ycl but ran out of memory for the calculation of the optimal alignment, in which case the Time

and Acc extries are shown as —. The heuristic incremental approach clearly allowed simultaneous

alignment of datasets with many sequences while the heuristic-Carrillo and Lipman’s approach failed

on most larger datasets. The incremental method requires an order of magnitude less memory and

approximately 6× less operations and one quarter of the time.

Although the heuristic incremental approach is not guaranteed to find the optimal solution, we are

unaware of any cases where it failed to find the optimal. We can combine the heuristic incremental

16

approach with the complete incremental approach by using the answer from the heuristic incremental

approach as the heuristic input to the complete incremental approach. For example we can prove the

optimal answer to bowman using 16 seconds to generate the optimal using the heuristic incremental

approach, plus 96 seconds to prove its optimality using the complete incremental approach.

We also ran the heuristic versions of both Carrillo and Lipman as well as the Incremental approach

on BALIBASE reference 1 benchmarks consisting of 81 datasets that are known to contain alignments

of divergent sequences. Table 4 shows these results. The gain using the Incremental approach is clearly

apparent from these results, more than an order of magnitude improvement in space requirements,

and significant gains in execution time.

The space and time usages of both the approaches is largely dependent on the scoring function.

To demonstrate this variability of space and time usages we undertook the comparisons between the

approaches using an in-house scoring matrix. The results of the comparisons are available at:

http://www.cs.mu.oz.au/~arun/INCR_APPROACH/tables_5_6_7.pdf

Changing the scoring function resulted in the runs of many data sets to fail using Carrillo and Lipman’s

method while Incremental approach performed better across all the comparisons.

8 Discussion

In this paper we demonstrate an approach for calculating optimal SP-alignments using linear gap

penalties, where for any pair of sequences a fixed penalty is applied whenever a gap symbol in one

sequence is aligned with a non-gap symbol in another. In general, affine gap penalties have been

shown to be more accurate than linear gap penalties (Altschul and Erickson, 1986). In the affine gap

scheme, for any pair of sequences, gaps are variably penalized proportional to the length of continuous

runs of gap symbols in one sequence aligned to non-gap symbols in another. For any such continuous

run of gap symbols, the penalty is of the form G : go +λg, where λ is the gap length, go is the penalty

for initiating a gap and g is the regular per-symbol penalty. However, implementing a dynamic

programming algorithm using affine gap penalties is more memory intensive than that of linear gaps.

Due to the non-additive nature of affine gap alignments and the impracticality of implementing them

using a single dynamic programming lattice (where at every cell in the lattice all possible gap-lengths

should be exhaustively tried), a common practice is to use multiple “help-lattices,” each help-lattice

corresponds to a particular type of alignment column and has its corresponding update rules (Gusfield,

17

1997). The help-lattices can then be used additively to determine the optimal alignment using affine

gaps. See Gusfield (1997) for details.

In theory, both Carrillo and Lipman’s method as well as the incremental algorithm discussed in

this paper can be extended to affine gap penalties in a sum-of-pairs measure. However, in practice

there are few problems in this extension. First, the number of help-lattices grow exponentially with

the number of sequences as O(2n) and hence the demand of space quickly becomes unacceptable. Even

if this is overlooked, under a sum-of-pairs scoring function, it is not possible to determine whether or

not a column of alignment in its pairwise (and hence subsequent) projections initiates a gap without

probing the information of arbitrary number of previous columns. The later problem is common also

to the “natural” gap penalties discussed in Altschul (1989) where, for a pairwise alignment, the natural

gap penalty is calculated by charging a constant penalty for every continuous run of gap symbols in

one sequence aligned to non-gap symbols in another. Altschul (1989) overcomes the problem of natural

gap penalties by compromising with a slightly altered definition which he calls “quasi-natural” gap

penalties where only the preceding column completely determines the number of gaps the current

column of alignment introduces. The implementation of MSA (Gupta et al., 1995) with space-time

improvements and accommodating affine gap penalties also compromises in the same way by relying

on the previous column to completely determine the gap initiation structure of any given column of

alignment. Let us call this “quasi-affine”gap penalties. Following the proof sketch of Theorem 4.1 we

can show that

Lk − Uk + ζq(πo
j1,··· ,jk

) ≤ ζq(←−γ o
j1,··· ,jk

). (4)

where, ζq is the scoring function using quasi-affine gap penalties in a sum-of-pairs measure, Lk =∑
∀1≤i1<···<ik≤n

ζq(←−γ h
i1,··· ,ik

) and Uk =
∑

∀1≤i1<···<ik≤n

ζq(πo
i1,··· ,ik

).

Hence it is possible to prove optimality using quasi-affine gap penalties for both Carrillo and

Lipman’s method as well the incremental approach.

There are a number of subtleties and problems in actually extending the implementation to use

quasi-affine penalties. First, the projection used in such an approach cannot remove all gap columns

since this changes the quasi-affine penalty function and the theoretical results will fail to hold. For

example the three pairwise projections of the alignment shown in Figure 1 would be

- C - Y R - W T - C - Y R - W T E C H Y R - - -

E C H Y R - - - - - - Y R I W - - - - Y R I W -

18

as opposed to those shown in Figure 2. With linear (and affine and natural) gap penalties the gap-gap

alignments have no score, this is no longer the case with quasi-affine (or quasi-natural) gap penalties.

Second, the calculation of the shadows Yij (and their multidimensional counterparts Γi1...ik
) is more

complicated since the optimal path through each cell C is not simply determined by summing the

optimal C-to-source path with an optimal C-to-sink path. Third, the calculation of optimal solutions

using quasi-affine penalties is expensive so in practice an approximation is used. If we do not require

provably optimal alignments, then we can ignore the above problems. In practice we would expect

that the overly generous nature of the generalized Carrillo and Lipman bound would still lead to

optimal alignments being found.

9 Conclusions

We present an approach for calculating optimal sum-of-pairs multiple alignments using incremental

Carrillo-Lipman bounds. Our experimental results demonstrate a drastic reduction in the exploration

space for optimal alignments compared to the conventional approach. This improvement allows many

runs that were unsuccessful using the original method. The incremental method can also be used

heuristically by tightening the bounds artificially on every increment. This heuristic method is faster

and more space efficient than using an heuristic version of Carrillo and Lipman bounds, an approach

used for example in tools such as MSA (Lipman et al., 1989).

The architecture of the incremental approach lends itself to straightforward parallelization over

symmetric multiprocessors using shared memory. At every different level, the nodes shown in Figure 4

are independent and hence can be calculated in parallel. This could further substantially reduce the

total time of execution. We have also discussed the extension of gap scoring scheme from linear to

quasi-affine. Future directions for investigation include the use of a tree model for scoring multiple

alignments, use of sequence weighting and enabling quasi-affine gap penalties to increase the accuracy

of this approach while combining it with divide-and-conquer technique to enable the simultaneous

alignments of large protein sequences in reasonably fast time.

10 Acknowledgements

A.S.K. thanks Jun Liu for his suggestions that aided debugging.

19

References

Althaus, E., Caprara, A., Lenhof, H.-P., and Reinert, K., 2002. Multiple sequence alignment with

arbitrary gap costs: Computing an optimal solution using polyhedral combinatorics. Bioinformatics

18, S4–S16. Suppl. S.

Altschul, S. F., 1989. Gap costs for multiple sequence alignment. J. Theor. Biol. 138, 297–309.

Altschul, S. F. and Erickson, B. W., 1986. Optimal sequence alignment using affine gap costs. Bull.

Math. Biol. 48, 603–616.

Altschul, S. F. and Lipman, D. J., 1989. Trees, stars, and multiple biological sequence alignment.

S.I.A.M. J. Appl. Math. 49, 197–209.

Carrillo, H. and Lipman, D., 1988. The multiple sequence alignment problem in biology. S.I.A.M. J.

Appl. Math. 48(5), 1073–1082.

Gupta, S. K., Kececioglu, J. D., and Schaffer, A., 1995. Improving the practical space and time

efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignments. J. Comput.

Biol. 2(3), 459–472.

Gusfield, D., 1993. Efficient methods for multiple sequence alignment with guaranteed error bounds.

Bull. Math. Biol. 55(1), 141–154.

Gusfield, D., 1997. Algorithms on strings, trees, and sequences: computer science and computational

biology, chapter 11. Cambridge University Press.

Henikoff, S. and Henikoff, J. G., 1992. Amino acid substitution matrices from protein blocks. Proc.

Natl. Acad. Sci. U.S.A. 89(22), 10915–10919.

Hughey, R. and Krogh, A., 1996. Hidden markov madels for sequence analysis: extension and analysis

of basic method. Comput. Appl. Biosci. 12, 95–107.

Just, W., 2001. Computational complexity of multiple sequence alignment with SP-score. J. Comput.

Biol. 8(6), 615–623.

20

Kececioglu, J. D., 1993. The maximum weight trace problem in multiple sequence alignment. In CPM

’93: Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching, 106–119.

Springer-Verlag, London, UK.

Lermen, M. and Reinert, K., 2000. The practical use of the A∗ algorithm for exact multiple sequence

alignment. J. Comput. Biol. 7, 655–671.

Lipman, D. J., Altschul, S. F., and Kececioglu, J. D., 1989. A tool for multiple sequence alignment.

Proc. Natl. Acad. Sci. U.S.A. 86, 4412–4415.

Mizuguchi, K., Deane, C. M., Blundell, T. L., and Overington, J. P., 1998. HOMSTRAD: A database

of protein structure alignments for homologous families. Prot. Sci. 7, 2469–2471.

Murata, M., Richardson, J., and Sussman, J., 1985. Simultaneous comparison of three protein se-

quences. Proc. Natl. Acad. Sci. U.S.A. 82, 3073–3077.

Needleman, S. B. and Wunsch, C. D., 1970. A general method applicable to the search for similarities

in amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

Notredame, C., 2002. Recent progress in multiple sequence alignments: A survey. Pharmacogenomics

3, 1–14.

Notredame, C., Higgins, D., and Heringa, J., 2000. T-Coffee: A novel method for multiple sequence

alignments. J. Mol. Biol. 302, 205–217.

Reinert, K., Lenhof, H.-P., Mutzel, P., Mehlhorn, K., and Kececioglu, J., 1997. A branch-and-

cut algorithm for multiple sequence alignment. In Proceedings of the First Annual International

Conference on Computational Molecular Biology (RECOMB-97), 241–249.

Reinert, K., Stoye, J., and Will, T., 2000. An iterative method for faster sum-of-pairs multiple

sequence alignment. Bioinformatics 16, 808–814.

Sneath, P. H. A. and Sokal, R. R., 1973. Numerical Taxonomy. W. H. Freeman and Company, San

Fransisco.

Stoye, J., 1998. Multiple sequence alignment with the divide-and-conquer method. Gene 211, GC45–

GC56.

21

Stoye, J., Moulton, V., and Dress, A. W., 1997. DCA: an efficient implementation of divide and

conquer approach to simultaneous multiple sequence alignment. Comput. Appl. Biosci. 13(6), 625–

626.

Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. CLUSTAL W: improving the sensitivity

of progressive multiple alignment through sequence weighting, position-specific gap penalties and

weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

Thompson, J. D., Plewniak, F., and Poch, O., 1999. BALIBASE: A benchmark alignment database

for the evaluation of multiple sequence alignment programs. Bioinformatics 15, 87–88.

Wang, L. and Jiang, T., 1994. On the complexity of multiple sequence alignment. J. Comput. Biol.

1, 337–348. Table I

Table II

Table III

Table IV

Table V

Table VI

Table VII

Table VIII

Table IX

Table X

Table XI

22

List of Figures

1 A path in three dimensional space corresponding to an alignment of three sequences. . 24

2 The projection of the path shown in Figure 1 into planes associated with its sequence

pairs. 26

3 An illustration of constraints on multiple alignment using bounds on its pairwise pro-

jections. The matrices correspond to the each pair of the sequences: S1 = PCVCGGQ,

S2 = MPRVCVCGQ, and S3 = DVCVC; (a) is S1 versus S2, (b) is S1 versus S3 and

(c) is S2 versus S3. The score in each cell of the matrices denotes the optimal path

between the end corners through that cell. For this example, L − U was computed to

be −7. The shaded regions denote Y12, Y13, and Y23 respectively. 28

4 The basic architecture of the Incremental Approach. 30

23

Figure 1: A path in three dimensional space corresponding to an alignment of three sequences.

24

⇑

A. S. Konagurthu

Figure 1 (of 4)

25

Figure 2: The projection of the path shown in Figure 1 into planes associated with its sequence pairs.

26

⇑

A. S. Konagurthu

Figure 2 (of 4)

27

Figure 3: An illustration of constraints on multiple alignment using bounds on its pairwise projections.

The matrices correspond to the each pair of the sequences: S1 = PCVCGGQ, S2 = MPRVCVCGQ, and

S3 = DVCVC; (a) is S1 versus S2, (b) is S1 versus S3 and (c) is S2 versus S3. The score in each cell of

the matrices denotes the optimal path between the end corners through that cell. For this example,

L− U was computed to be −7. The shaded regions denote Y12, Y13, and Y23 respectively.

28

⇑

A. S. Konagurthu

Figure 3 (of 4)

29

Figure 4: The basic architecture of the Incremental Approach.

30

⇑

A. S. Konagurthu

Figure 4 (of 4)

31

List of Tables

1 Comparisons between Carrillo and Lipman’s approach and Incremental Approach over

HOMSTRAD datasets . 33

1 ...continued . 34

2 Comparisons between Carrillo and Lipman’s approach and Incremental Approach both

using the optimal as heuristic over HOMSTRAD data sets. 35

2 ...continued . 36

3 Comparisons between heuristic-Carrillo and Lipman’s approach and heuristic-Incremental

Approach over HOMSTRAD data sets. 37

3 ...continued . 38

3 ...continued . 39

4 Comparisons between heuristic-Carrillo and Lipman’s approach and heuristic-Incremental

Approach using BALIBASE reference 1 data sets. 40

4 ...continued . 41

4 ...continued . 42

4 ...continued . 43

32

Table 1: Comparisons between Carrillo and Lipman’s approach and Incremental Approach over HOM-

STRAD datasets. PSU , TOps, Time, Acc represents Peak Space Usage, Total Operations, Time, and

Accuracy respectively. The definitions of these metrics can be found in Section 7. (For the last row,

the entries corresponding to the PSU , TOps, and Time columns indicates their respective geometric

means while the entry corresponding to Acc indicates its arithmetic mean.)

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

bowman (5) 2.546e+07 1.578e+08 1704 s 76.0% 3.323e+06 4.563e+07 420 s 76.0%

CBS (4) 6.258e+06 2.347e+07 199 s 44.8% 3.635e+06 1.518e+07 82 s 44.8%

ccH (4) 1.449e+05 5.434e+05 4 s 94.8% 4.512e+04 2.951e+05 2 s 94.8%

ChtBD (5) 6.910e+03 4.284e+04 1 s 95.8% 6.600e+02 2.637e+04 2 s 95.8%

cytb (4) 2.785e+05 1.044e+06 9 s 80.6% 5.212e+04 4.259e+05 3 s 80.6%

dhfr (4) 2.001e+07 7.505e+07 606 s 81.2% 8.570e+06 3.755e+07 220 s 81.2%

GLA (4) 9.753e+04 3.657e+05 3 s 97.1% 2.446e+04 1.900e+05 2 s 97.1%

Glyco hydro 18 D2 (4) 1.643e+07 6.160e+07 544 s 64.9% 7.277e+06 3.063e+07 183 s 64.9%

hpr (5) 6.227e+05 3.861e+06 26 s 97.4% 8.253e+04 2.152e+06 21 s 97.4%

hr (5) 1.821e+06 1.129e+07 76 s 97.0% 1.664e+05 4.232e+06 43 s 97.0%

HTH AraC (4) 4.095e+06 1.536e+07 132 s 29.3% 2.533e+06 1.080e+07 62 s 29.3%

LDLa (4) 4.545e+04 1.704e+05 1 s 89.9% 1.830e+04 1.169e+05 <1 s 89.9%

LIM (5) 5.453e+06 3.381e+07 220 s 90.4% 4.427e+05 1.122e+07 110 s 90.4%

myb DNA-binding (5) 2.280e+06 1.414e+07 98 s 93.6% 1.949e+05 4.621e+06 46 s 93.6%

parv (7) 6.898e+06 1.252e+08 860 s 97.9% 2.643e+05 4.760e+07 696 s 97.9%

plantltp (5) 3.208e+05 1.989e+06 12 s 79.6% 2.302e+04 6.228e+05 7 s 79.6%

Propep M14 (4) 3.246e+04 1.217e+05 1 s 93.5% 7.041e+03 8.038e+04 1 s 93.5%

protg (4) 7.756e+05 2.909e+06 23 s 48.2% 2.183e+05 1.292e+06 7 s 48.2%

rep (4) 1.100e+06 4.126e+06 35 s 79.2% 1.098e+05 9.985e+05 7 s 79.2%

rub (5) 1.688e+04 1.046e+05 1 s 93.5% 4.128e+03 1.136e+05 2 s 93.5%

. . .Continued on next page

33

Table 1: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

seatoxin (5) 1.378e+07 8.543e+07 743 s 67.5% 8.993e+05 2.026e+07 191 s 67.5%

squash (4) 8.488e+03 3.183e+04 1 s 91.1% 2.004e+03 2.422e+04 <1 s 91.1%

tbpc (4) 1.436e+06 5.386e+06 45 s 94.0% 6.347e+05 3.285e+06 24 s 94.0%

tgfb (5) 4.910e+06 3.044e+07 191 s 89.6% 4.444e+05 1.174e+07 125 s 89.6%

TIG (6) 3.658e+07 3.841e+08 4222 s 97.1% 1.951e+06 8.927e+07 1426 s 97.1%

TIL (4) 2.071e+06 7.765e+06 60 s 75.1% 4.066e+05 2.366e+06 15 s 75.1%

WW (4) 2.132e+06 7.997e+06 65 s 61.6% 1.254e+06 5.390e+06 29 s 61.6%

Mean 9.757e+05 4.855e+06 41.8 81.5% 1.744e+05 2.220e+06 21.9 81.5%

34

Table 2: Comparisons between Carrillo and Lipman’s approach and Incremental Approach both using

the optimal as heuristic over HOMSTRAD data sets. PSU , TOps, Time, Acc represents Peak Space

Usage, Total Operations, Time, and Accuracy respectively. The definitions of these metrics can be

found in Section 7.(For the last row, the entries corresponding to the PSU , TOps, Time columns

indicates their respective geometric means while the entry corresponding to Acc indicates its arithmetic

mean. For judicious comparisons of these central trends for each column across both the methods, the

missing entries (—) in a column corresponding to Carrillo and Lipman Approach and the equivalent

entries from a column in Incremental Approach are both excluded from the calculations.)

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

bowman (5) 9.314e+06 5.775e+07 216 s 76.0% 6.410e+05 1.028e+07 96 s 76.0%

CBS (4) 1.662e+06 6.231e+06 16 s 44.8% 2.056e+05 1.423e+06 8 s 44.8%

ccH (4) 3.098e+04 1.162e+05 2 s 94.8% 5.226e+03 6.119e+04 1 s 94.8%

ChtBD (5) 6.645e+03 4.120e+04 1 s 95.8% 5.940e+02 2.089e+04 <1 s 95.8%

cyt5 (6) 4.377e+07 4.596e+08 3199 s 72.9% 2.936e+05 1.736e+07 181 s 72.9%

cytb (4) 1.400e+05 5.251e+05 1 s 80.6% 1.928e+04 1.841e+05 1 s 80.6%

dhfr (4) 1.024e+06 3.842e+06 12 s 81.2% 8.793e+04 1.121e+06 10 s 81.2%

GLA (4) 2.608e+04 9.780e+04 1 s 97.1% 5.994e+03 4.061e+04 1 s 97.1%

Glyco hydro 18 D2 (4) 2.574e+06 9.651e+06 25 s 64.9% 1.361e+05 1.385e+06 9 s 64.9%

hpr (5) 1.722e+04 1.068e+05 1 s 97.4% 1.722e+03 3.894e+04 1 s 97.4%

hr (5) 2.560e+05 1.587e+06 5 s 97.0% 1.416e+04 4.242e+05 5 s 97.0%

HTH AraC (4) 4.265e+05 1.599e+06 5 s 29.3% 3.832e+04 4.716e+05 3 s 29.3%

kazal (6) 1.188e+07 1.247e+08 691 s 88.3% 1.089e+05 6.258e+06 62 s 88.3%

LDLa (4) 3.996e+03 1.498e+04 1 s 89.9% 9.120e+02 9.374e+03 <1 s 89.9%

LIM (5) 7.697e+05 4.772e+06 14 s 90.4% 6.217e+04 1.365e+06 13 s 90.4%

myb DNA-binding (5) 2.330e+05 1.445e+06 4 s 93.6% 7.995e+03 3.023e+05 3 s 93.6%

parv (7) 1.907e+06 3.459e+07 133 s 97.9% 4.564e+04 8.317e+06 93 s 97.9%

. . .Continued on next page

35

Table 2: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

plantltp (5) 9.758e+04 6.050e+05 2 s 79.6% 6.477e+03 1.421e+05 2 s 79.6%

Propep M14 (4) 8.912e+03 3.342e+04 1 s 93.5% 2.055e+03 1.619e+04 <1 s 93.5%

protg (4) 1.817e+05 6.815e+05 2 s 48.2% 2.437e+04 2.166e+05 2 s 48.2%

rep (4) 7.486e+05 2.807e+06 7 s 79.2% 6.365e+04 6.442e+05 4 s 79.2%

rnasemam (6) — — — — 6.023e+06 3.582e+08 5230 s 87.4%

rub (5) 1.076e+04 6.674e+04 1 s 93.5% 8.460e+02 2.467e+04 <1 s 93.5%

seatoxin (5) 2.328e+06 1.444e+07 48 s 67.5% 1.053e+05 2.054e+06 18 s 67.5%

squash (4) 2.320e+03 8.700e+03 1 s 91.1% 6.240e+02 5.125e+03 <1 s 91.1%

tbpc (4) 3.086e+04 1.157e+05 2 s 94.0% 8.190e+03 6.797e+04 2 s 94.0%

tgfb (5) 2.994e+05 1.856e+06 6 s 89.6% 2.134e+04 5.749e+05 4 s 89.6%

TIG (6) 9.682e+06 1.017e+08 457 s 97.1% 1.602e+05 1.426e+07 159 s 97.1%

TIL (4) 3.667e+05 1.375e+06 4 s 75.1% 3.628e+04 2.812e+05 2 s 75.1%

WW (4) 2.125e+05 7.969e+05 2 s 61.6% 2.062e+04 2.326e+05 1 s 61.6%

Mean 2.451e+05 1.284e+06 7.6 81.4% 1.876e+04 3.357e+05 4.6 81.4%

36

Table 3: Comparisons between heuristic-Carrillo and Lipman’s approach and heuristic-Incremental

Approach over HOMSTRAD data sets. PSU , TOps, Time, Acc represents Peak Space Usage, Total

Operations, Time, and Accuracy respectively. The definitions of these metrics can be found in Section

7. (For the last row, the entries corresponding to the PSU , TOps, and Time columns indicates their

respective geometric means while the entry corresponding to Acc indicates its arithmetic mean. For

judicious comparisons of these central trends for each column across both the methods, the missing

entries (—) in a column corresponding to Carrillo and Lipman Approach and the equivalent entries

from a column in Incremental Approach are both excluded from the calculations.)

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

bowman (5) 2.023e+06 1.254e+07 80 s 76.0% 7.354e+04 2.017e+06 16 s 76.0%

CBM 20 (8) — — — — 4.608e+04 3.004e+07 315 s 80.9%

CBS (4) 4.548e+05 1.705e+06 14 s 44.8% 8.539e+04 6.026e+05 5 s 44.8%

ccH (4) 9.272e+04 3.477e+05 3 s 94.8% 1.552e+04 1.513e+05 1 s 94.8%

ChtBD (5) 6.910e+03 4.284e+04 1 s 95.8% 6.600e+02 2.637e+04 1 s 95.8%

cryst (7) 8.089e+07 1.468e+09 — — 9.001e+04 1.985e+07 228 s 85.7%

cyclo (6) 2.319e+07 2.435e+08 1598 s 77.3% 2.818e+05 1.745e+07 216 s 77.3%

cyt5 (6) 5.348e+06 5.616e+07 353 s 72.9% 3.056e+04 3.138e+06 32 s 72.9%

cytb (4) 1.789e+05 6.707e+05 6 s 80.6% 3.272e+04 2.940e+05 2 s 80.6%

dhfr (4) 3.903e+05 1.464e+06 13 s 81.2% 6.948e+04 6.292e+05 6 s 81.2%

flav (6) 3.574e+07 3.752e+08 2561 s 80.0% 1.976e+05 1.883e+07 220 s 80.0%

ghf11 (5) 1.731e+06 1.073e+07 73 s 91.9% 4.998e+04 1.872e+06 21 s 91.9%

ghf22 (12) — — — — 8.118e+04 4.817e+08 4091 s 96.4%

GLA (4) 9.753e+04 3.657e+05 3 s 97.1% 1.487e+04 1.690e+05 1 s 97.1%

Glyco hydro 18 D2 (4) 5.675e+05 2.128e+06 17 s 64.9% 1.349e+05 8.603e+05 6 s 64.9%

hpr (5) 6.227e+05 3.861e+06 23 s 97.4% 1.376e+04 6.652e+05 7 s 97.4%

hr (5) 5.189e+05 3.217e+06 19 s 97.0% 2.428e+04 6.775e+05 6 s 97.0%

. . .Continued on next page

37

Table 3: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

HTH AraC (4) 2.488e+05 9.328e+05 8 s 29.3% 6.595e+04 4.650e+05 3 s 29.3%

igC1 (5) 7.994e+05 4.957e+06 30 s 82.9% 1.798e+04 8.128e+05 8 s 82.9%

il8 (11) — — — — 4.635e+04 6.125e+08 6389 s 81.7%

kazal (6) 3.490e+06 3.664e+07 260 s 88.3% 2.906e+04 2.544e+06 26 s 88.3%

kringle (9) — — — — 6.326e+04 1.098e+08 1228 s 94.7%

kunitz (10) — — — — 1.666e+04 1.518e+08 1600 s 94.0%

LDLa (4) 4.545e+04 1.704e+05 2 s 89.9% 1.061e+04 8.811e+04 1 s 89.9%

LIM (5) 8.261e+05 5.122e+06 29 s 90.4% 4.932e+04 1.098e+06 10 s 90.4%

MHC II C (8) — — — — 3.261e+04 2.719e+07 289 s 98.1%

mmp (6) 7.422e+06 7.793e+07 462 s 95.6% 2.951e+04 4.762e+06 54 s 95.6%

myb DNA-binding (5) 5.027e+05 3.116e+06 18 s 93.6% 1.530e+04 5.744e+05 5 s 93.6%

parv (7) 6.898e+06 1.252e+08 897 s 97.9% 1.733e+04 5.843e+06 66 s 97.9%

plantltp (5) 3.208e+05 1.989e+06 12 s 79.6% 2.302e+04 6.228e+05 7 s 79.6%

profilin (5) 1.743e+06 1.080e+07 65 s 93.7% 4.786e+04 1.586e+06 18 s 93.7%

Propep M14 (4) 3.246e+04 1.217e+05 2 s 93.5% 7.041e+03 8.038e+04 1 s 93.5%

protg (4) 2.079e+05 7.796e+05 6 s 48.2% 2.632e+04 2.864e+05 2 s 48.2%

rep (4) 3.900e+05 1.463e+06 12 s 79.2% 4.154e+04 4.848e+05 3 s 79.2%

rnasemam (6) 9.238e+06 9.700e+07 600 s 87.4% 5.233e+04 5.635e+06 60 s 87.4%

rub (5) 1.688e+04 1.046e+05 1 s 93.5% 4.128e+03 1.136e+05 1 s 93.5%

RuBisCO large N (6) 1.986e+07 2.085e+08 1416 s 82.5% 1.019e+05 9.173e+06 98 s 82.5%

scorptoxin (8) 1.368e+08 6.485e+07 — — 3.258e+04 2.648e+07 268 s 88.1%

seatoxin (5) 5.524e+05 3.425e+06 20 s 67.5% 1.932e+04 6.151e+05 5 s 67.5%

serbact (5) 2.045e+06 1.268e+07 85 s 89.5% 5.896e+04 1.996e+06 22 s 89.5%

slectin (5) 1.782e+06 1.105e+07 71 s 92.5% 4.792e+04 1.722e+06 17 s 92.5%

. . .Continued on next page

38

Table 3: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

sodcu (7) 9.748e+07 1.769e+09 — — 1.078e+05 2.883e+07 347 s 85.0%

squash (4) 8.488e+03 3.183e+04 <1 s 91.1% 2.004e+03 2.422e+04 <1 s 91.1%

sti (5) 3.723e+06 2.308e+07 153 s 77.9% 9.487e+04 3.096e+06 33 s 77.9%

tbpc (4) 2.260e+05 8.475e+05 8 s 94.0% 2.965e+04 3.684e+05 5 s 94.0%

tgfb (5) 8.438e+05 5.232e+06 31 s 89.6% 2.957e+04 1.034e+06 10 s 89.6%

TIG (6) 2.812e+06 2.952e+07 179 s 97.1% 1.574e+04 2.046e+06 21 s 97.1%

TIL (4) 2.499e+05 9.372e+05 8 s 75.1% 2.809e+04 3.362e+05 3 s 75.1%

uce (6) 1.349e+07 1.417e+08 965 s 92.4% 6.006e+04 6.989e+06 75 s 92.4%

WW (4) 1.982e+05 7.431e+05 6 s 61.6% 3.969e+04 2.957e+05 2 s 61.6%

Mean 9.807e+05 5.790e+06 32.1 83.0% 3.133e+04 1.062e+06 8.5 83.0%

39

Table 4: Comparisons between heuristic-Carrillo and Lipman’s approach and heuristic-Incremental

Approach using BALIBASE reference 1 data sets. PSU , TOps, Time, Acc represents Peak Space

Usage, Total Operations, Time, and Accuracy respectively. The definitions of these metrics can

be found in Section 7. (For the last row, the entries corresponding to the PSU and TOps columns

indicates their respective geometric means while the entry corresponding to Acc indicates its arithmetic

mean. For judicious comparisons of these central trends for each column across both the methods, the

missing entries (—) in a column corresponding to Carrillo and Lipman Approach and the equivalent

entries from a column in Incremental Approach are both excluded from the calculations.)

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

TEST1 DATA SET

1aab.msf.ali (4) 2.857e+05 1.072e+06 9 s 72.6% 5.808e+04 4.387e+05 3 s 72.6%

1aboA.msf.ali (5) 8.636e+06 5.354e+07 372 s 38.9% 2.858e+05 6.461e+06 54 s 38.9%

1aho.msf.ali (5) 8.600e+05 5.332e+06 32 s 88.3% 3.814e+04 9.721e+05 10 s 88.3%

1csp.msf.ali (5) 4.555e+05 2.824e+06 16 s 93.2% 1.424e+04 5.706e+05 6 s 93.2%

1csy.msf.ali (5) 2.020e+06 1.252e+07 78 s 79.4% 5.909e+04 1.873e+06 18 s 79.4%

1dox.msf.ali (4) 1.094e+05 4.101e+05 4 s 93.1% 1.647e+04 1.781e+05 2 s 93.1%

1fjlA.msf.ali (6) 9.681e+06 1.016e+08 659 s 93.3% 8.095e+04 5.116e+06 51 s 93.3%

1fkj.msf.ali (5) 1.344e+06 8.330e+06 53 s 90.0% 3.748e+04 1.254e+06 12 s 90.0%

1fmb.msf.ali (4) 2.649e+04 9.934e+04 2 s 86.0% 5.958e+03 6.700e+04 1 s 86.0%

1hfh.msf.ali (5) 2.823e+06 1.750e+07 113 s 84.3% 6.723e+04 2.233e+06 22 s 84.3%

1hpi.msf.ali (4) 1.699e+05 6.371e+05 6 s 76.1% 3.581e+04 2.890e+05 2 s 76.1%

1idy.msf.ali (5) 5.117e+06 3.173e+07 247 s 53.5% 2.311e+05 3.958e+06 33 s 53.5%

1krn.msf.ali (5) 1.045e+06 6.479e+06 41 s 94.6% 5.739e+04 1.304e+06 11 s 94.6%

1pfc.msf.ali (5) 1.918e+06 1.189e+07 85 s 79.5% 7.806e+04 1.919e+06 18 s 79.5%

1plc.msf.ali (5) 1.220e+06 7.561e+06 49 s 88.8% 3.782e+04 1.174e+06 10 s 88.8%

1r69.msf.ali (4) 7.085e+05 2.657e+06 20 s 20.8% 1.218e+05 8.311e+05 6 s 20.8%

1tgxA.msf.ali (4) 1.612e+05 6.044e+05 5 s 72.3% 2.983e+04 2.496e+05 2 s 72.3%

. . .Continued on next page

40

Table 4: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

1tvxA.msf.ali (4) 5.973e+05 2.240e+06 17 s 33.7% 1.952e+05 1.083e+06 6 s 33.7%

1ubi.msf.ali (4) 1.063e+06 3.985e+06 33 s 20.2% 2.445e+05 1.488e+06 9 s 20.2%

1wit.msf.ali (5) 5.752e+06 3.566e+07 239 s 63.4% 1.962e+05 3.903e+06 35 s 63.4%

1ycc.msf.ali (4) 5.071e+05 1.902e+06 15 s 69.0% 8.638e+04 7.318e+05 5 s 69.0%

2fxb.msf.ali (5) 2.896e+04 1.796e+05 1 s 97.1% 6.116e+03 1.606e+05 2 s 97.1%

2mhr.msf.ali (5) 1.191e+06 7.383e+06 47 s 96.9% 3.427e+04 1.242e+06 13 s 96.9%

2trx.msf.ali (4) 7.223e+05 2.709e+06 21 s 67.3% 1.137e+05 8.724e+05 6 s 67.3%

3cyr.msf.ali (4) 2.692e+05 1.010e+06 9 s 70.7% 6.026e+04 4.575e+05 4 s 70.7%

451c.msf.ali (5) 3.559e+06 2.206e+07 142 s 61.3% 1.381e+05 3.066e+06 26 s 61.3%

9rnt.msf.ali (5) 9.193e+05 5.700e+06 36 s 95.0% 2.094e+04 9.397e+05 9 s 95.0%

TEST2 DATA SET

1ad2.msf.ali (4) 5.421e+05 2.033e+06 18 s 87.4% 1.063e+05 8.760e+05 9 s 87.4%

1amk.msf.ali (5) 2.126e+06 1.318e+07 82 s 97.9% 4.202e+04 2.124e+06 29 s 97.9%

1ar5A.msf.ali (4) 3.190e+05 1.196e+06 11 s 87.7% 6.170e+04 5.451e+05 7 s 87.7%

1aym3.msf.ali (4) 6.050e+05 2.269e+06 20 s 86.5% 1.258e+05 1.005e+06 11 s 86.5%

1bbt3.msf.ali (5) 5.068e+07 3.142e+08 — — 1.232e+06 2.412e+07 251 s 38.2%

1ezm.msf.ali (5) 2.299e+06 1.425e+07 93 s 95.5% 5.212e+04 2.578e+06 38 s 95.5%

1gdoA.msf.ali (4) 1.043e+06 3.911e+06 32 s 78.4% 2.146e+05 1.582e+06 18 s 78.4%

1havA.msf.ali (5) — — — — 2.329e+06 3.984e+07 447 s 20.5%

1ldg.msf.ali (4) 9.241e+05 3.465e+06 37 s 92.1% 1.532e+05 1.341e+06 17 s 92.1%

1led.msf.ali (4) 4.155e+05 1.558e+06 15 s 46.1% 8.343e+04 7.163e+05 9 s 46.1%

1mrj.msf.ali (4) 6.045e+05 2.267e+06 21 s 88.8% 1.124e+05 9.605e+05 12 s 88.8%

1pgtA.msf.ali (4) 6.720e+05 2.520e+06 20 s 83.6% 8.219e+04 9.807e+05 10 s 83.6%

1pii.msf.ali (4) 1.076e+06 4.034e+06 34 s 79.7% 1.899e+05 1.536e+06 15 s 79.7%

. . .Continued on next page

41

Table 4: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

....TEST2 DATA SET continued

1ppn.msf.ali (5) 1.748e+06 1.084e+07 69 s 62.1% 5.105e+04 1.988e+06 26 s 62.1%

1pysA.msf.ali (4) 5.001e+05 1.875e+06 17 s 91.5% 9.470e+04 8.382e+05 10 s 91.5%

1sbp.msf.ali (5) 5.622e+07 3.485e+08 — — 3.777e+06 6.602e+07 712 s 51.1%

1thm.msf.ali (4) 3.981e+05 1.493e+06 15 s 89.8% 5.278e+04 6.734e+05 10 s 89.8%

1tis.msf.ali (5) 4.477e+06 2.776e+07 178 s 94.2% 1.470e+05 4.557e+06 56 s 94.2%

1ton.msf.ali (5) 1.079e+07 6.688e+07 451 s 76.8% 3.672e+05 8.285e+06 100 s 76.8%

1uky.msf.ali (4) 2.863e+06 1.074e+07 83 s 25.5% 3.617e+05 2.819e+06 22 s 25.5%

1zin.msf.ali (4) 3.197e+05 1.199e+06 10 s 91.1% 5.846e+04 5.421e+05 7 s 91.1%

2cba.msf.ali (5) 1.967e+07 1.220e+08 — — 6.781e+05 1.445e+07 170 s 62.2%

2hsdA.msf.ali (4) 3.186e+06 1.195e+07 100 s 53.9% 5.493e+05 3.843e+06 36 s 53.9%

2pia.msf.ali (4) 4.180e+06 1.567e+07 126 s 54.5% 5.522e+05 4.233e+06 37 s 54.5%

3grs.msf.ali (4) 4.158e+06 1.559e+07 118 s 31.5% 5.899e+05 4.249e+06 34 s 31.5%

5ptp.msf.ali (5) 3.910e+06 2.424e+07 151 s 82.3% 9.144e+04 3.274e+06 42 s 82.3%

kinase.msf.ali (5) 2.180e+07 1.352e+08 982 s 56.0% 6.593e+05 1.339e+07 150 s 56.0%

TEST3 DATA SET

1ac5.msf.ali (4) 3.869e+06 1.451e+07 141 s 71.8% 3.803e+05 4.090e+06 51 s 71.8%

1ad3.msf.ali (4) 6.387e+05 2.395e+06 27 s 94.9% 1.171e+05 1.091e+06 22 s 94.9%

1adj.msf.ali (4) 8.992e+05 3.372e+06 33 s 94.4% 9.403e+04 1.278e+06 25 s 94.4%

1ajsA.msf.ali (4) 5.709e+06 2.141e+07 174 s 31.2% 4.826e+05 5.281e+06 54 s 31.2%

1cpt.msf.ali (4) 2.942e+06 1.103e+07 103 s 72.0% 5.132e+05 3.785e+06 43 s 72.0%

1dlc.msf.ali (4) — — — — 4.372e+05 3.473e+06 57 s 79.9%

1eft.msf.ali (4) 1.566e+06 5.871e+06 55 s 81.2% 2.883e+05 2.302e+06 28 s 81.2%

1fieA.msf.ali (4) 1.394e+06 5.226e+06 67 s 91.6% 2.251e+05 2.078e+06 54 s 91.6%

. . .Continued on next page

42

Table 4: ...continued

DATA SET CARRILLO AND LIPMAN INCREMENTAL

PSU TOps Time Acc PSU TOps. Time Acc

1gowA.msf.ali (4) 5.217e+06 1.956e+07 171 s 61.2% 5.559e+05 4.577e+06 63 s 61.2%

1gpb.msf.ali (5) 7.963e+06 4.937e+07 428 s 95.9% 2.126e+05 7.938e+06 226 s 95.9%

1gtr.msf.ali (5) 5.924e+06 3.673e+07 271 s 94.0% 1.534e+05 5.605e+06 99 s 94.0%

1lcf.msf.ali (6) 5.629e+07 5.910e+08 — — 6.604e+05 3.935e+07 1120 s 90.7%

1lvl.msf.ali (4) 4.465e+06 1.675e+07 170 s 32.5% 7.320e+05 7.945e+06 86 s 32.5%

1ped.msf.ali (3) 2.604e+05 6.076e+05 10 s 59.6% 2.097e+05 4.894e+05 5 s 59.6%

1pkm.msf.ali (4) 1.320e+06 4.948e+06 47 s 83.5% 2.239e+05 1.898e+06 31 s 83.5%

1rthA.msf.ali (5) 6.312e+06 3.913e+07 286 s 92.0% 1.523e+05 5.488e+06 118 s 92.0%

1sesA.msf.ali (5) 9.923e+06 6.152e+07 424 s 90.1% 1.932e+05 7.006e+06 108 s 90.1%

1taq.msf.ali (5) — — — — 2.508e+06 4.349e+07 945 s 84.5%

2ack.msf.ali (5) 4.276e+07 2.651e+08 — — 1.238e+06 2.446e+07 356 s 74.8%

2myr.msf.ali (4) 3.577e+07 1.341e+08 — — 4.450e+06 2.781e+07 242 s 27.4%

3lad.msf.ali (4) 1.446e+06 5.424e+06 54 s 86.7% 2.447e+05 2.128e+06 33 s 86.7%

3pmg.msf.ali (4) 9.325e+05 3.497e+06 42 s 93.5% 1.807e+05 1.582e+06 35 s 93.5%

4enl.msf.ali (3) 5.686e+05 1.327e+06 20 s 41.3% 5.184e+05 1.210e+06 8 s 41.3%

actin.msf.ali (5) 3.765e+06 2.334e+07 164 s 93.6% 1.157e+05 4.091e+06 66 s 93.6%

arp.msf.ali (5) 1.750e+07 1.085e+08 753 s 80.2% 8.815e+05 1.700e+07 226 s 80.2%

gal4.msf.ali (5) — — — — 2.835e+06 5.879e+07 738 s 36.4%

glg.msf.ali (5) 2.791e+07 1.730e+08 1248 s 76.3% 4.495e+05 1.447e+07 221 s 76.3%

Mean 1.831e+06 8.644e+06 52.8 75.1% 1.469e+05 2.145e+06 19.2 75.1%

43

